Cantitate/Preț
Produs

Codeless Deep Learning with KNIME

Autor Kathrin Melcher, Rosaria Silipo
en Limba Engleză Paperback – 26 noi 2020
Discover how to integrate KNIME Analytics Platform with deep learning libraries to implement artificial intelligence solutions


Key Features
  • Become well-versed with KNIME Analytics Platform to perform codeless deep learning
  • Design and build deep learning workflows quickly and more easily using the KNIME GUI
  • Discover different deployment options without using a single line of code with KNIME Analytics Platform


Book Description
KNIME Analytics Platform is an open source software used to create and design data science workflows. This book is a comprehensive guide to the KNIME GUI and KNIME deep learning integration, helping you build neural network models without writing any code. It'll guide you in building simple and complex neural networks through practical and creative solutions for solving real-world data problems.


Starting with an introduction to KNIME Analytics Platform, you'll get an overview of simple feed-forward networks for solving simple classification problems on relatively small datasets. You'll then move on to build, train, test, and deploy more complex networks, such as autoencoders, recurrent neural networks (RNNs), long short-term memory (LSTM), and convolutional neural networks (CNNs). In each chapter, depending on the network and use case, you'll learn how to prepare data, encode incoming data, and apply best practices.


By the end of this book, you'll have learned how to design a variety of different neural architectures and will be able to train, test, and deploy the final network.


What You Will Learn
  • Use various common nodes to transform your data into the right structure suitable for training a neural network
  • Understand neural network techniques such as loss functions, backpropagation, and hyperparameters
  • Prepare and encode data appropriately to feed it into the network
  • Build and train a classic feedforward network
  • Develop and optimize an autoencoder network for outlier detection
  • Implement deep learning networks such as CNNs, RNNs, and LSTM with the help of practical examples
  • Deploy a trained deep learning network on real-world data


Who this book is for
This book is for data analysts, data scientists, and deep learning developers who are not well-versed in Python but want to learn how to use KNIME GUI to build, train, test, and deploy neural networks with different architectures. The practical implementations shown in the book do not require coding or any knowledge of dedicated scripts, so you can easily implement your knowledge into practical applications. No prior experience of using KNIME is required to get started with this book.
Citește tot Restrânge

Preț: 30125 lei

Preț vechi: 37655 lei
-20% Nou

Puncte Express: 452

Preț estimativ în valută:
5767 5931$ 4784£

Carte tipărită la comandă

Livrare economică 20 februarie-06 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781800566613
ISBN-10: 1800566611
Pagini: 384
Dimensiuni: 191 x 235 x 21 mm
Greutate: 0.66 kg
Editura: Packt Publishing