Cantitate/Preț
Produs

Coherent States: New Insights into Quantum Mechanics with Applications: Lecture Notes in Physics, cartea 1011

Autor Chon-Fai Kam, Wei-Min Zhang, Da-Hsuan Feng
en Limba Engleză Paperback – 20 mai 2023
This book presents the essential ideas of coherent states and provides researchers and graduate students with the necessary tools for various applications of generalized coherent state theory. These applications include areas such as quantum information, quantum phase transitions, quantum many-body systems, quantum chaos, and quantum open systems. The aim of the book is to show how coherent states can be applied to an extensive range of physical systems. The authors provide many exercises at the end of each chapter to enhance the mastery of the subject. Throughout the first seven chapters, only an understanding of elementary quantum mechanics is assumed, and for the last six chapters, some basic knowledge of group theory is requested to follow the arguments. 
Citește tot Restrânge

Din seria Lecture Notes in Physics

Preț: 46025 lei

Preț vechi: 55452 lei
-17% Nou

Puncte Express: 690

Preț estimativ în valută:
8809 9078$ 7437£

Carte disponibilă

Livrare economică 11-25 februarie
Livrare express 25-31 ianuarie pentru 3464 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031207655
ISBN-10: 3031207653
Pagini: 351
Ilustrații: XII, 351 p. 26 illus., 25 illus. in color.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.56 kg
Ediția:1st ed. 2023
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Physics

Locul publicării:Cham, Switzerland

Cuprins

Introduction.- Coherent States of Harmonic Oscillator.- Schrodinger’s Cat States.- Coherent State of Fermions.- Coherent State Path Integrals.- Spin Coherent States.- Squeezed Coherent States.- Examples of Coherent States beyond SU(2).- Lie Group Generalizations of Coherent States.- Quantum Many-Body Systems.- Quantum Phase Transitions.- Quantum Chaos.- Open Quantum Systems. 

Notă biografică

Chon-Fai Kam received his Ph.D. degree in theoretical condensed matter physics from the Chinese University of Hong Kong in 2018. From 2019 to 2021, he was a Postdoc Fellow at the Department of Mathematics of University of Macau. Since 2022, he has been a Postdoc Fellow at the Department of Physics of University at Buffalo. His research interests include squeezed coherent states, multipartite entanglement, quantum information, quantum phase transition, non-Hermitian systems, and non-adiabatic transitions. He developed a nonlinear quantum mechanics approach to interacting quantum systems, a quantum information approach to quantum phase transitions, and the Majorana star representation for general multipartite entangled states. He is now working on enhanced spin qubit readout using optical squeezed states. 
Wei-Min Zhang is a Distinguished Professor of the Physics Department at National Cheng Kung University (NCKU) in Taiwan. He received his PhD intheoretical physics from Drexel University, USA, in 1989. He was Post-Doctoral Research Fellows at the University of Washington in Seattle (1990-1991), and at the Ohio-State University (1992-1993). From 1994 to 1998, he was a Visiting Associate Professor at the Institute of Physics of Academic Sinica at Taipei and became a Full Professor in 1999 and, then, a Distinguished Professor in 2004 at NCKU. His research interests cover many different fields in theoretical physics, including quantum information and quantum computing, mesoscopic physics, quantum optics, open quantum systems and quantum decoherence, quantum transport, strongly correlated many-body physics, quantum chromodynamics (QCD), quantum field theory, quantum chaos, nuclear physics, quantum phase transitions and quantum thermodynamics. He developed the transport theory for heavy-ion collisions, the two component theory of light-front QCD, a SU(2)xU(1) gauge theory for high-temperature superconductivity, the fermionic decoherent theory of nanoelectronics, the photonic transport theory of nanophotonics, the general non-Markovian theory for open quantum systems and the quantum dissipative theory of topological matter.
Da-Hsuan Feng received his Ph.D. in theoretical nuclear physics from the University of Minnesota in 1972. From 1991-2000, he was M. Russell Wehr Professor of Physics at Drexel University. From 2001-2007, he was Vice President (VP) of Research and Professor of Physics at the University of Texas in Dallas. From 2007-2017, he was Senior Executive VP at National Tsing Hua University, National Cheng Kung University and Special Advisor to the President of University of Macau, respectively. Between 1983-1985, he was the Program Director of Theoretical Physics of the National Science Foundation.  In 1996, he became a Fellow of the American Physical Society: “For outstanding contributions to the understanding of nuclear structure physics, particularly for the use of coherentstates.” In 1990, together with Wei-Min Zhang and Robert Gilmore published a review article entitled Coherent States: Theory and Some Applications in the Review of Modern Physics, cited more than 1600 times.


Textul de pe ultima copertă

This book presents the essential ideas of coherent states and provides researchers and graduate students with the necessary tools for various applications of generalized coherent state theory. These applications include areas such as quantum information, quantum phase transitions, quantum many-body systems, quantum chaos, and quantum open systems. The aim of the book is to show how coherent states can be applied to an extensive range of physical systems. The authors provide many exercises at the end of each chapter to enhance the mastery of the subject. Throughout the first seven chapters, only an understanding of elementary quantum mechanics is assumed, and for the last six chapters, some basic knowledge of group theory is requested to follow the arguments. 

Caracteristici

Trains the readers to solve problems related to various fields of physics Includes latest applications, spanning from quantum information to quantum topological systems Enriched with examples and exercises to master the subject