Commutative Harmonic Analysis III: Generalized Functions. Application: Encyclopaedia of Mathematical Sciences, cartea 72
Editat de V. P. Havin Traducere de R. Cooke Contribuţii de V.S. Buslaev Editat de N.K. Nikol'skij Contribuţii de B. Jöricke, V.P. Palamodoven Limba Engleză Paperback – 21 oct 2012
Din seria Encyclopaedia of Mathematical Sciences
- 20% Preț: 568.19 lei
- 15% Preț: 626.48 lei
- Preț: 378.08 lei
- 15% Preț: 625.20 lei
- Preț: 378.83 lei
- 18% Preț: 933.40 lei
- 15% Preț: 642.34 lei
- 18% Preț: 1095.17 lei
- 15% Preț: 627.11 lei
- 18% Preț: 1090.05 lei
- 15% Preț: 635.13 lei
- 15% Preț: 635.31 lei
- 20% Preț: 555.78 lei
- 18% Preț: 1213.46 lei
- 18% Preț: 1204.04 lei
- 18% Preț: 1102.72 lei
- 15% Preț: 629.52 lei
- 18% Preț: 1103.34 lei
- Preț: 377.87 lei
- 18% Preț: 931.36 lei
- 15% Preț: 631.45 lei
- 15% Preț: 631.61 lei
- 18% Preț: 876.67 lei
- 15% Preț: 630.15 lei
- 15% Preț: 682.08 lei
- 18% Preț: 933.59 lei
- 18% Preț: 715.86 lei
- 24% Preț: 682.13 lei
Preț: 379.42 lei
Nou
Puncte Express: 569
Preț estimativ în valută:
72.61€ • 75.43$ • 60.32£
72.61€ • 75.43$ • 60.32£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642633805
ISBN-10: 3642633803
Pagini: 280
Ilustrații: VII, 268 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Encyclopaedia of Mathematical Sciences
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642633803
Pagini: 280
Ilustrații: VII, 268 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Encyclopaedia of Mathematical Sciences
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Distributions and Harmonic Analysis.- II. Optical and Acoustic Fourier Processors.- III. The Uncertainty Principle in Harmonic Analysis.
Textul de pe ultima copertă
This EMS volume shows the great power provided by modern harmonic analysis, not only in mathematics, but also in mathematical physics and engineering. Aimed at a reader who has learned the principles of harmonic analysis, this book is intended to provide a variety of perspectives on this important classical subject. The authors have written an outstanding book which distinguishes itself by the authors' excellent expository style.
It can be useful for the expert in one area of harmonic analysis who wishes to obtain broader knowledge of other aspects of the subject and also by graduate students in other areas of mathematics who wish a general but rigorous introduction to the subject.
It can be useful for the expert in one area of harmonic analysis who wishes to obtain broader knowledge of other aspects of the subject and also by graduate students in other areas of mathematics who wish a general but rigorous introduction to the subject.