Cantitate/Preț
Produs

Compendium of Hydrogen Energy: Hydrogen Use, Safety and the Hydrogen Economy: Woodhead Publishing Series in Energy

Editat de Michael Ball, Angelo Basile, T. Nejat Veziroglu
en Limba Engleză Hardback – 21 aug 2015
Compendium of Hydrogen Energy Volume 4: Hydrogen Use, Safety and the Hydrogen Economy focuses on the uses of hydrogen. As many experts believe the hydrogen economy will, at some point, replace the fossil fuel economy as the primary source of the world’s energy, this book investigates the uses of this energy, from transport, to stationary and portable applications, with final sections discussing the difficulties and possibilities of the widespread adoption of the hydrogen economy.


  • Written by both leading academics in the fields of sustainable energy and experts from the world of industry
  • Part of a very comprehensive compendium which across four volumes looks at the entirety of the hydrogen energy economy
  • Covers a wide array of hydrogen uses, and details safety tactics, hydrogen applications in transport, and the hydrogen economy as a whole
Citește tot Restrânge

Din seria Woodhead Publishing Series in Energy

Preț: 94946 lei

Preț vechi: 104336 lei
-9% Nou

Puncte Express: 1424

Preț estimativ în valută:
18173 18889$ 15053£

Carte tipărită la comandă

Livrare economică 28 ianuarie-11 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781782423645
ISBN-10: 1782423648
Pagini: 386
Dimensiuni: 152 x 229 x 25 mm
Greutate: 0.82 kg
Editura: ELSEVIER SCIENCE
Seria Woodhead Publishing Series in Energy


Public țintă

Academic researchers and postgraduate students working in the area of the hydrogen useage, R&D managers in industry interested in the use of hydrogen as an energy and academic researchers and postgraduate students working in the wider area of the hydrogen economy.

Cuprins

  • List of contributors
  • Part One: Hydrogen applications in transport and industry
    • 1: Hydrogen-fueled road automobiles – Passenger cars and buses
      • Abstract
      • 1.1 Introduction
      • 1.2 Comparison of different hydrogen-fueled drive systems
      • 1.3 Technical solutions for FCEVs
      • 1.4 Technical approaches for the main components of FCEVs
      • 1.5 Challenges for FCEVs – Consideration of main markets
      • 1.6 Summary and future trends
      • 1.7 Sources of further information and advice
    • 2: Hydrogen-fueled motorcycles, bicycles, and industrial trucks
      • Abstract
      • 2.1 Introduction
      • 2.2 Hydrogen motorcycles and bicycles
      • 2.3 Hydrogen industrial trucks
      • 2.4 Conclusions
    • 3: Hydrogen-fueled marine transportation
      • Abstract
      • 3.1 Market environment
      • 3.2 Requirements for marine FCs
      • 3.3 Suitable FC systems
      • 3.4 FC integration in ships
      • 3.5 Marine FC projects
      • 3.6 Future trends
    • 4: Hydrogen-fueled aeroplanes
      • Abstract
      • 4.1 Introduction to hydrogen vs. traditional technologies: Differences and similarities, advantages, and disadvantages
      • 4.2 Hydrogen fuel on aircraft—Challenges and requirements
      • 4.3 Advantages and disadvantages of hydrogen storage methods in aeronautics
      • 4.4 Available energy conversion technologies
      • 4.5 Available infrastructure (production, airport)
      • 4.6 Operational aspects (turn around)
      • 4.7 Safety aspects (layout, design, and strategy)
      • 4.8 Safety strategy
      • 4.9 Certification aspects
      • 4.10 Environmental and economic aspects and public acceptance
      • 4.11 Future trends
      • 4.12 Summary
    • 5: Hydrogen-fueled spacecraft and other space applications of hydrogen
      • Abstract
      • 5.1 Introduction: The potential of hydrogen-powered spacecraft
      • 5.2 Advantages and disadvantages of hydrogen-fueled spacecraft
      • 5.3 Principles: Suitable hydrogen power sources for spacecraft
      • 5.4 Advantages and disadvantages of the power sources
      • 5.5 Challenges for hydrogen-fueled spacecraft
      • 5.6 Other space applications of hydrogen
      • 5.7 Market trends
      • 5.8 Hydrogen storage in spacecraft
      • 5.9 Advantages and disadvantages of the various potential storage methods
      • 5.10 Safety concerns regarding the storage of hydrogen in these vehicles
      • 5.11 Future trends
  • Part Two: Other applications of hydrogen
    • 6: Hydrogen fuel cells for portable applications
      • Abstract
      • Acknowledgments
      • 6.1 Introduction
      • 6.2 Drawbacks of hydrogen fuel cells regarding application in portable devices
      • 6.3 Present status
      • 6.4 Market penetration
      • 6.5 Future perspectives and conclusion
    • 7: Large-scale underground storage of hydrogen for the grid integration of renewable energy and other applications
      • Abstract
      • 7.1 Hydrogen and the need for energy storage in Europe
      • 7.2 Markets for hydrogen
      • 7.3 Technology for large-scale hydrogen storage
      • 7.4 Potential for hydrogen underground storage
      • 7.5 Hydrogen storage economics in energy systems with increasing share of intermittent renewable energy
      • 7.6 State-of-discussion and development perspectives
    • 8: Hydrogen admixture to the natural gas grid
      • Abstract
      • Acknowledgments
      • 8.1 Introduction
      • 8.2 Reasons for adding hydrogen to the natural gas grid
      • 8.3 Potential benefits and problems associated with adding hydrogen to the natural gas grid
      • 8.4 State of the art
      • 8.5 The bottlenecks—Considering a 10 vol% admixture
      • 8.6 R&D necessary to overcome the bottlenecks
      • 8.7 Additional requirements
      • 8.8 Key technologies
      • 8.9 Future trends: The methanation option
      • 8.10 Economic considerations
      • 8.11 Regulatory issues
      • 8.12 Practical recommendations for hydrogen injection
      • 8.13 Conclusions
      • 8.14 Sources of further information
      • Recommended further reading
  • Part Three: Hydrogen safety
    • 9: Hydrogen safety: An overview
      • Abstract
      • 9.1 Introduction
      • 9.2 Properties of hydrogen and their implications for safety
      • 9.3 Hazards of hydrogen
      • 9.4 Management for accident prevention
      • 9.5 Future trends
      • 9.6 Conclusions
      • 9.7 Sources of further information
    • 10: Hydrogen sensors and detectors
      • Abstract
      • 10.1 Introduction
      • 10.2 Terms and definitions
      • 10.3 Requirements of hydrogen sensors and detectors
      • 10.4 Current hydrogen sensors and detectors on the market: Technologies and operation principles
      • 10.5 Current research and development in hydrogen sensors and detectors
      • 10.6 Detection layout and maintenance of detectors
      • 10.7 Conclusions
      • 10.8 Sources of further information
  • Part Four: The hydrogen economy
    • 11: The hydrogen economy—Vision or reality?
      • Abstract
      • Acknowledgments
      • 11.1 Setting the context—The global energy challenge
      • 11.2 Options for the road transport sector
      • 11.3 A short history of hydrogen
      • 11.4 The status of hydrogen fuel cell vehicles
      • 11.5 Building a hydrogen delivery infrastructure for the transport sector
      • 11.6 The hydrogen infrastructure challenge and how to overcome it
      • 11.7 The role of hydrogen for renewables’ integration
      • 11.8 Perspectives and outlook
    • 12: Building a hydrogen infrastructure in the EU
      • Abstract
      • 12.1 Introduction: which hydrogen infrastructure(s) is/are required?
      • 12.2 Current status of hydrogen infrastructure
      • 12.3 Costs for setting up the hydrogen infrastructure
      • 12.4 Status and outlook of EU hydrogen infrastructure initiatives
      • 12.5 Moving toward full deployment
      • 12.6 Conclusions
    • 13: Building a hydrogen infrastructure in the United States
      • Abstract
      • 13.1 Introduction
      • 13.2 Current status of hydrogen infrastructure in the United States
      • 13.3 Initial costs of deploying hydrogen infrastructure
      • 13.4 Market trends
      • 13.5 Hydrogen refueling infrastructure
      • 13.6 Hydrogen production, transmission, and distribution
      • 13.7 Hydrogen transmission and distribution barriers
      • 13.8 Material
    • 14: Building a hydrogen infrastructure in Japan
      • Abstract
      • 14.1 Introduction
      • 14.2 The new strategic energy plan (Strategic Energy Plan, 2014)
      • 14.3 Strategic Road Map For Hydrogen and FCs (Strategic Road Map for Hydrogen et al., 2014)
      • 14.4 Off-site (centralized) versus on-site (distributed) hydrogen production
      • 14.5 Novel hydrogen production methods
      • 14.6 Hydrogen distribution and storage
      • 14.7 Initial current cost of hydrogen stations
      • 14.8 Residential use FC system (The Japan Gas Association, n.d.)
      • 14.9 FC vehicle
      • 14.10 Current situation in Japan as regards hydrogen infrastructure
      • 14.11 Conclusions
    • 15: Environmental impacts of hydrogen use in vehicles
      • Abstract
      • 15.1 Introduction
      • 15.2 Environmental assessment
      • 15.3 Reference systems
      • 15.4 Results and discussion
      • 15.5 Final considerations
  • Index