Composite Materials Technology: Neural Network Applications
Editat de S.M. Sapuan, Iqbal Mohammed Mujtabaen Limba Engleză Paperback – 19 sep 2019
Compiling information from diverse sources, Composite Materials Technology: Neural Network Applications fills the void in knowledge of these important networks, covering composite mechanics, materials characterization, product design, and other important aspects of polymer matrix composites.
Light weight, corrosion resistance, good stiffness and strength properties, and part consolidation are just some of the reasons that composites are useful in areas including civil engineering and structure, chemical processing, management, agriculture, space study, and manufacturing. ANN has already been used to carry out design prediction, mechanical property prediction, and selection processes in the evolution of composites, but although it has already been used with great success in various branches of scientific and technological research, it is still in the nascent stage of its development.
Featuring contributions from leading researchers throughout the world, this book is divided into four parts, starting with an introduction to neural networks and a review of existing literature on the subject. The text then covers structural health monitoring and damage detection in composites, addresses mechanical properties, and discusses design, analysis, and materials selection. Training, testing, and validation of experimental data were carried out to optimize the results presented in the book.
This book will be an important aid to researchers as they work on the future implementation of ANN in industries such as aerospace, automotive, marine, sporting goods, furniture, and electronics and communication.
Preț: 353.35 lei
Preț vechi: 510.92 lei
-31% Nou
Puncte Express: 530
Preț estimativ în valută:
67.62€ • 70.17$ • 56.52£
67.62€ • 70.17$ • 56.52£
Carte tipărită la comandă
Livrare economică 15-29 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780367384623
ISBN-10: 0367384620
Pagini: 368
Dimensiuni: 156 x 234 x 23 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
ISBN-10: 0367384620
Pagini: 368
Dimensiuni: 156 x 234 x 23 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Public țintă
Professional Practice & DevelopmentCuprins
Application of Artificial Neural Network in Composites Materials. Network Approaches for Defect Detection in Composite Materials. The Use of Artificial Neural Networks in Damage Detection and Assessment in Polymeric Composite Structures. Damage Identification and Localization of Carbon Fiber-Reinforced Plastic Composite Plate Using Outlier Analysis and Multilayer Perceptron Neural Network. Damage Localization of Carbon Fiber-Reinforced Plastic Composite and Perspex Plates Using Novelty Indices and the Cross-Validation Set of Multilayer Perceptron Neural Network. Impact Damage Detection in a Composite Structure Using Artificial Neural Network. Artificial Neural Networks for Predicting the Mechanical Behavior of Cement-Based Composites after 100 Cycles of Aging. Fatigue Life Prediction of Fiber-Reinforced Composites Using Artificial Neural Networks. Optimizing Neural Network Prediction of Composite Fatigue Life Under Variable Amplitude Loading Using Bayesian Regularization. Free Vibration Analysis and Optimal Design of the Adhesively Bonded Composite Single Lap and Tubular Lap Joints. Determining Initial Design Parameters by Using Genetically. Optimized Neural Network Systems. Development of a Prototype Computational Framework for Selection of Natural Fiber-Reinforced Polymer Composite Materials Using Neural Network. Index.
Notă biografică
S. M. Sapuan is a professor of composite materials and the head of the Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM). He is the vice president and honorary member of Asian Polymer Association; fellow of Institute of Materials, Malaysia; life fellow, International Biographical Association; life member, Institute of Energy, Malaysia; member, Society of Automotive Engineers International; member, International Association of Engineers; member, Plastics and Rubber Institute, Malaysia; and a professional engineer. He has published more than 200 papers in refereed journals, more than 200 papers in conferences/seminars, and six books in engineering.
I. M. Mujtaba is a professor of computational process engineering in the School of Engineering, Design and Technology at the University of Bradford, UK. He is a fellow of the IChemE, a chartered chemical engineer, and a chartered scientist. Professor Mujtaba is actively involved in many research areas like dynamic modeling, simulation, optimization, and control of batch and continuous chemical processes with specific interests in distillation, industrial reactors, refinery processes, and desalination. He has published more than 110 technical papers in major engineering journals, international conference proceedings, and books.
I. M. Mujtaba is a professor of computational process engineering in the School of Engineering, Design and Technology at the University of Bradford, UK. He is a fellow of the IChemE, a chartered chemical engineer, and a chartered scientist. Professor Mujtaba is actively involved in many research areas like dynamic modeling, simulation, optimization, and control of batch and continuous chemical processes with specific interests in distillation, industrial reactors, refinery processes, and desalination. He has published more than 110 technical papers in major engineering journals, international conference proceedings, and books.
Descriere
Bringing together the work of leading researchers from all parts of the world, this book provides readers with an understanding of the various applications of artificial neural networks (ANN) involved in composite material technology. Covering composite mechanics, materials characterization, product design, and other important areas, it first presents a review of the literature and then offers recent research on neural network approaches for defect detection in a variety of composite materials. It also explores techniques for selecting, predicting the behavior, and monitoring composite materials.