Cantitate/Preț
Produs

Compressive Imaging: Structure, Sampling, Learning

Autor Ben Adcock, Anders C. Hansen
en Limba Engleză Hardback – 15 sep 2021
Accurate, robust and fast image reconstruction is a critical task in many scientific, industrial and medical applications. Over the last decade, image reconstruction has been revolutionized by the rise of compressive imaging. It has fundamentally changed the way modern image reconstruction is performed. This in-depth treatment of the subject commences with a practical introduction to compressive imaging, supplemented with examples and downloadable code, intended for readers without extensive background in the subject. Next, it introduces core topics in compressive imaging – including compressed sensing, wavelets and optimization – in a concise yet rigorous way, before providing a detailed treatment of the mathematics of compressive imaging. The final part is devoted to recent trends in compressive imaging: deep learning and neural networks. With an eye to the next decade of imaging research, and using both empirical and mathematical insights, it examines the potential benefits and the pitfalls of these latest approaches.
Citește tot Restrânge

Preț: 42299 lei

Preț vechi: 52874 lei
-20% Nou

Puncte Express: 634

Preț estimativ în valută:
8100 8746$ 6747£

Carte disponibilă

Livrare economică 15-29 noiembrie
Livrare express 01-07 noiembrie pentru 5750 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781108421614
ISBN-10: 110842161X
Pagini: 614
Dimensiuni: 174 x 248 x 31 mm
Greutate: 1.32 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom

Cuprins

1. Introduction; Part I. The Essentials of Compressive Imaging: 2. Images, transforms and sampling; 3. A short guide to compressive imaging; 4. Techniques for enhancing performance; Part II. Compressed Sensing, Optimization and Wavelets: 5. An introduction to conventional compressed sensing; 6. The LASSO and its cousins; 7. Optimization for compressed sensing; 8. Analysis of optimization algorithms; 9. Wavelets; 10. A taste of wavelet approximation theory; Part III. Compressed Sensing with Local Structure: 11. From global to local; 12. Local structure and nonuniform recovery; 13. Local structure and uniform recovery; 14. Infinite-dimensional compressed sensing; Part IV. Compressed Sensing for Imaging: 15. Sampling strategies for compressive imaging; 16. Recovery guarantees for wavelet-based compressive imaging; 17. Total variation minimization; Part V. From Compressed Sensing to Deep Learning: 18. Neural networks and deep learning; 19. Deep learning for compressive imaging; 20. Accuracy and stability of deep learning for compressive imaging; 21. Stable and accurate neural networks for compressive imaging; 22. Epilogue; Appendices: A. Linear Algebra; B. Functional analysis; C. Probability; D. Convex analysis and convex optimization; E. Fourier transforms and series; F. Properties of Walsh functions and the Walsh transform; Notation; Abbreviations; References; Index.

Notă biografică


Descriere

This is a practical, rigorous guide to the compressive imaging revolution that has fundamentally changed modern image reconstruction.