Cantitate/Preț
Produs

Computational Interval Methods for Engineering Applications

Autor Snehashish Chakraverty, Nisha Rani Mahato
en Limba Engleză Paperback – 31 oct 2020
Computational Interval Methods for Engineering Applicationsexplains how to use classical and advanced interval arithmetic to solve differential equations for a wide range of scientific and engineering problems. In mathematical models where there are variables and parameters of uncertain value, interval methods can be used as an efficient tool for handling this uncertainty. In addition, it can produce rigorous enclosures of solutions of practical problems governed by mathematical equations. Other topics discussed in the book include linear differential equations in areas such as robotics, control theory, and structural dynamics, and in nonlinear oscillators, such as Duffing and Van der Pol.
The chaotic behavior of the enclosure of oscillators is also covered, as are static and dynamic analysis of engineering problems using the interval system of linear equations and eigenvalue problems, thus making this a comprehensive resource.


  • Explains how interval arithmetic can be used to solve problems in a range of engineering disciplines, including structural and control
  • Gives unique, comprehensive coverage of traditional and innovative interval techniques, with examples addressing both linear and nonlinear differential equations
  • Provides full mathematical details of the governing differential equations used to solve a wide range of problems
Citește tot Restrânge

Preț: 75851 lei

Preț vechi: 83353 lei
-9% Nou

Puncte Express: 1138

Preț estimativ în valută:
14514 15154$ 12012£

Carte nepublicată încă

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780128178584
ISBN-10: 0128178582
Pagini: 220
Dimensiuni: 152 x 229 mm
Editura: ELSEVIER SCIENCE

Public țintă

Researchers in academia and industry exploring computational methods in engineering, addressing problems in areas including structures, control, and robotics

Cuprins

1. Basics of interval analysis 2. Classical interval arithmetic 3. Interval linear differential equations 4. Interval non-linear differential equations 5. Parametric interval arithmetic 6. Modal interval arithmetic 7. Affine arithmetic 8. Concepts of Contractors 9. Differential inclusion 10. Global optimisation using interval 11. Interval uncertainty in linear structural problems 12. Interval uncertainty in non-linear dynamic structural problems 13. Interval uncertainty in control problems 14. Interval uncertainty in system identification problems 15. Interval uncertainty in other science and engineering problems

Notă biografică

Dr. Snehashish Chakraverty has over thirty years of experience as a teacher and researcher. Currently, he is a Senior Professor in the Department of Mathematics (Applied Mathematics Group) at the National Institute of Technology Rourkela, Odisha, India. He has a Ph.D. from IIT Roorkee in Computer Science. Thereafter he did his post-doctoral research at Institute of Sound and Vibration Research (ISVR), University of Southampton, U.K. and at the Faculty of Engineering and Computer Science, Concordia University, Canada. He was also a visiting professor at Concordia and McGill Universities, Canada, and visiting professor at the University of Johannesburg, South Africa. He has authored/co-authored 14 books, published 315 research papers in journals and conferences, and has four more books in development. Dr. Chakraverty is on the Editorial Boards of various International Journals, Book Series and Conferences. Dr. Chakraverty is the Chief Editor of the International Journal of Fuzzy Computation and Modelling (IJFCM), Associate Editor of Computational Methods in Structural Engineering, Frontiers in Built Environment, and is the Guest Editor for several other journals. He was the President of the Section of Mathematical sciences (including Statistics) of the Indian Science Congress. His present research area includes Differential Equations (Ordinary, Partial and Fractional), Soft Computing and Machine Intelligence (Artificial Neural Network, Fuzzy and Interval Computations), Numerical Analysis, Mathematical Modeling, Uncertainty Modelling, Vibration and Inverse Vibration Problems.