Cantitate/Preț
Produs

Computational Linear Algebra: with Applications and MATLAB® Computations: Textbooks in Mathematics

Autor Robert E. White
en Limba Engleză Hardback – 21 apr 2023
Courses on linear algebra and numerical analysis need each other. Often NA courses have some linear algebra topics, and LA courses mention some topics from numerical analysis/scientific computing. This text merges these two areas into one introductory undergraduate course. It assumes students have had multivariable calculus. A second goal of this text is to demonstrate the intimate relationship of linear algebra to applications/computations.
A rigorous presentation has been maintained. A third reason for writing this text is to present, in the first half of the course, the very important topic on singular value decomposition, SVD. This is done by first restricting consideration to real matrices and vector spaces. The general inner product vector spaces are considered starting in the middle of the text.
The text has a number of applications. These are to motivate the student to study the linear algebra topics. Also, the text has a number of computations. MATLAB® is used, but one could modify these codes to other programming languages. These are either to simplify some linear algebra computation, or to model a particular application.
Citește tot Restrânge

Din seria Textbooks in Mathematics

Preț: 35819 lei

Nou

Puncte Express: 537

Preț estimativ în valută:
6855 7072$ 5802£

Carte disponibilă

Livrare economică 11-25 februarie
Livrare express 25-31 ianuarie pentru 3828 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781032302461
ISBN-10: 1032302461
Pagini: 330
Ilustrații: 31 Line drawings, black and white; 31 Illustrations, black and white
Dimensiuni: 156 x 234 x 26 mm
Greutate: 0.6 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Textbooks in Mathematics


Public țintă

Postgraduate and Professional

Cuprins

1. Solution of AX = d.  2. Matrix Factorizations. 3. Least Squares and Normal Equations. 4. Ax = d with m<n. 5. Orthogonal Subspaces and Bases. 6. Eigenvectors and Orthonormal Basis. 7. Singular Value Decomposition. 8. Three Applications of SVD. 9. Pseudoinverse of A. 10. General Inner Product Vector Spaces. 11. Iterative Methods. 12. Nonlinear Problems and Least Squares.


Notă biografică

Robert E. White is Professor Emeritus, North Carolina State University. He is also the author of Computational Mathematics: Models, Methods, Analysis with MATLAB® and MPI, second edition and Elements of Matrix Modeling and Computing with MATLAB®, both published by CRC Press.

Descriere

Courses on linear algebra and numerical analysis need each other. Often NA courses have some linear algebra topics, and LA courses mention some topics from numerical analysis/scientific computing. This text merges these two areas into one introductory undergraduate course. It assumes students have had multivariable calculus.