Computational Methods for Electromagnetic Phenomena: Electrostatics in Solvation, Scattering, and Electron Transport
Autor Wei Caien Limba Engleză Hardback – 2 ian 2013
Preț: 1145.05 lei
Preț vechi: 1331.45 lei
-14% Nou
Puncte Express: 1718
Preț estimativ în valută:
219.16€ • 227.94$ • 183.66£
219.16€ • 227.94$ • 183.66£
Carte tipărită la comandă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781107021051
ISBN-10: 1107021057
Pagini: 461
Ilustrații: 44 b/w illus. 5 tables
Dimensiuni: 178 x 252 x 27 mm
Greutate: 0.95 kg
Ediția:New.
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 1107021057
Pagini: 461
Ilustrații: 44 b/w illus. 5 tables
Dimensiuni: 178 x 252 x 27 mm
Greutate: 0.95 kg
Ediția:New.
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
Cuprins
Part I. Electrostatics in Solvations: 1. Dielectric constant and fluctuation formulae for molecular dynamics; 2. Poisson–Boltzmann electrostatics and analytical approximations; 3. Numerical methods for Poisson–Boltzmann equations; 4. Fast algorithms for long-range interactions; Part II. Electromagnetic Scattering: 5. Maxwell equations, potentials, and physical/artificial boundary conditions; 6. Dyadic Green's functions in layered media; 7. High order methods for surface electromagnetic integral equations; 8. High order hierarchical Nedelec edge elements; 9. Time domain methods – discontinuous Galerkin method and Yee scheme; 10. Computing scattering in periodic structures and surface plasmons; 11. Solving Schrödinger equations in waveguides and quantum dots; Part III. Electron Transport: 12. Quantum electron transport in semiconductors; 13. Non-equilibrium Green's function (NEGF) methods for transport; 14. Numerical methods for Wigner quantum transport; 15. Hydrodynamics electron transport and finite difference methods; 16. Transport models in plasma media and numerical methods.
Recenzii
'This is a truly unique book that covers a variety of computational methods for several important physical (electromagnetics) problems in a rigorous manner with a great depth. It will benefit not only computational mathematicians, but also physicists and electrical engineers interested in numerical analysis of electrostatic, electrodynamic, and electron transport problems. The breadth (both in terms of physics and numerical analysis) and depth are very impressive. I like, in particular, the way the book is organized: a physical problem is described clearly first and then followed by the presentation of relevant state-of-the-art computational methods.' Jian-Ming Jin, Y. T. Lo Chair Professor in Electrical and Computer Engineering, University of Illinois, Urbana-Champaign
'This book is a great and unique contribution to computational modeling of electromagnetic problems across many fields, covering in depth all interesting multiscale phenomena, from electrostatics in biomolecules, to EM scattering, to electron transport in plasmas, and quantum electron transport in semiconductors. It includes both atomistic descriptions and continuum based formulations with emphasis on long-range interactions and high-order algorithms, respectively. The book is divided into three main parts and includes both established but also new algorithms on every topic addressed, e.g. fast multipole expansions, boundary integral equations, high-order finite elements, discontinuous Galerkin and WENO methods. Both the organization of the material and the exposition of physical and algorithmic concepts are superb and make the book accessible to researchers and students in every discipline.' George Karniadakis, Professor of Applied Mathematics, Brown University
'This is an excellent book for one who wants to study and understand the relationship between mathematical methods and the many different physical problems they can model and solve.' Weng Cho Chew, Y. T. Lo Chair Professor in Electrical and Computer Engineering, University of Illinois, Urbana-Champaign
'A well-written book which will be of use to a broad range of students and researchers in applied mathematics, applied physics and engineering. It provides a clear presentation of many topics in computational electromagnetics and illustrates their importance in a distinctive and diverse set of applications.' Leslie Greengard, Courant Institute, New York University
'This book is a great and unique contribution to computational modeling of electromagnetic problems across many fields, covering in depth all interesting multiscale phenomena, from electrostatics in biomolecules, to EM scattering, to electron transport in plasmas, and quantum electron transport in semiconductors. It includes both atomistic descriptions and continuum based formulations with emphasis on long-range interactions and high-order algorithms, respectively. The book is divided into three main parts and includes both established but also new algorithms on every topic addressed, e.g. fast multipole expansions, boundary integral equations, high-order finite elements, discontinuous Galerkin and WENO methods. Both the organization of the material and the exposition of physical and algorithmic concepts are superb and make the book accessible to researchers and students in every discipline.' George Karniadakis, Professor of Applied Mathematics, Brown University
'This is an excellent book for one who wants to study and understand the relationship between mathematical methods and the many different physical problems they can model and solve.' Weng Cho Chew, Y. T. Lo Chair Professor in Electrical and Computer Engineering, University of Illinois, Urbana-Champaign
'A well-written book which will be of use to a broad range of students and researchers in applied mathematics, applied physics and engineering. It provides a clear presentation of many topics in computational electromagnetics and illustrates their importance in a distinctive and diverse set of applications.' Leslie Greengard, Courant Institute, New York University
Notă biografică
Descriere
The first book of its kind to cover a wide range of computational methods for electromagnetic phenomena.