Computational Topology for Data Analysis
Autor Tamal Krishna Dey, Yusu Wangen Limba Engleză Hardback – 9 mar 2022
Preț: 432.88 lei
Nou
Puncte Express: 649
Preț estimativ în valută:
82.85€ • 86.35$ • 68.97£
82.85€ • 86.35$ • 68.97£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781009098168
ISBN-10: 1009098160
Pagini: 452
Dimensiuni: 155 x 234 x 30 mm
Greutate: 0.77 kg
Ediția:Nouă
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 1009098160
Pagini: 452
Dimensiuni: 155 x 234 x 30 mm
Greutate: 0.77 kg
Ediția:Nouă
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
Cuprins
1. Basics; 2. Complexes and homology groups; 3. Topological persistence; 4. General persistence; 5. Generators and optimality; 6. Topological analysis of point clouds; 7. Reeb graphs; 8. Topological analysis of graphs; 9. Cover, nerve and Mapper; 10. Discrete Morse theory and applications; 11. Multiparameter persistence and decomposition; 12. Multiparameter persistence and distances; 13. Topological persistence and machine learning.
Recenzii
'A must-have up-to-date computational account of a vibrant area connecting pure mathematics with applications.' Herbert Edelsbrunner, IST Austria
'This book provides a comprehensive treatment of the algorithmic aspects of topological persistence theory, both in the classical one-parameter setting and in the emerging multi-parameter setting. It is an excellent resource for practitioners within or outside the field, who want to learn about the current state-of-the-art algorithms in topological data analysis.' Steve Oudot, Inria and Ecole polytechnique
'This book provides a comprehensive treatment of the algorithmic aspects of topological persistence theory, both in the classical one-parameter setting and in the emerging multi-parameter setting. It is an excellent resource for practitioners within or outside the field, who want to learn about the current state-of-the-art algorithms in topological data analysis.' Steve Oudot, Inria and Ecole polytechnique
Notă biografică
Descriere
This book provides a computational and algorithmic foundation for techniques in topological data analysis, with examples and exercises.