Cantitate/Preț
Produs

Conference on the Numerical Solution of Differential Equations: Dundee 1973: Lecture Notes in Mathematics, cartea 363

Editat de G. a. Watson
en Limba Engleză Paperback – 25 ian 1974

Din seria Lecture Notes in Mathematics

Preț: 31957 lei

Nou

Puncte Express: 479

Preț estimativ în valută:
6118 6292$ 5075£

Carte tipărită la comandă

Livrare economică 20 februarie-06 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540066170
ISBN-10: 3540066179
Pagini: 236
Ilustrații: CCXL, 228 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.34 kg
Ediția:1974
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

A conjugate gradient approach to nonlinear elliptic boundary value problems in irregular regions.- Good approximation by splines with variable knots. II.- Conforming and nonconforming finite element methods for solving the plate problem.- Discretization and chained approximation.- Recent developments of the hopscotch idea.- The development of software for solving ordinary differential equations.- Boundary conditions for hyperbolic differential equations.- Nonlinear methods for stiff systems of ordinary differential equations.- Curved elements in the finite element method.- The design of difference schemes for studying physical instabilities.- Variable order variable step finite difference methods for nonlinear boundary value problems.- Cyclic finite-difference methods for ordinary differential equations.- The dimension of piecewise polynomial spaces, and one-sided approximation.- The comparative efficiency of certain finite element and finite difference methods for a hyperbolic problem.- Spline-galerkin methods for initial-value problems with constant coefficients.- On the accelerated SSOR method for solving elliptic boundary value problems.- Algebraic-geometry foundations for finite-element computation.- Spline-galerkin methods for initial-value problems with variable coefficients.- Constrained variational principles and penalty function methods in finite element analysis.- Finite element methods for parabolic equations.