Cantitate/Preț
Produs

Conformal Vector Fields, Ricci Solitons and Related Topics: Infosys Science Foundation Series

Autor Ramesh Sharma, Sharief Deshmukh
en Limba Engleză Hardback – 20 ian 2024
This book provides an up-to-date introduction to the theory of manifolds, submanifolds, semi-Riemannian geometry and warped product geometry, and their applications in geometry and physics. It then explores the properties of conformal vector fields and conformal transformations, including their fixed points, essentiality and the Lichnerowicz conjecture. Later chapters focus on the study of conformal vector fields on special Riemannian and Lorentzian manifolds, with a special emphasis on general relativistic spacetimes and the evolution of conformal vector fields in terms of initial data.

The book also delves into the realm of Ricci flow and Ricci solitons, starting with motivations and basic results and moving on to more advanced topics within the framework of Riemannian geometry. The main emphasis of the book is on the interplay between conformal vector fields and Ricci solitons, and their applications in contact geometry. The book highlights the fact that Nil-solitons and Sol-solitons naturally arise in the study of Ricci solitons in contact geometry. Finally, the book gives a comprehensive overview of generalized quasi-Einstein structures and Yamabe solitons and their roles in contact geometry. It would serve as a valuable resource for graduate students and researchers in mathematics and physics as well as those interested in the intersection of geometry and physics.

Citește tot Restrânge

Din seria Infosys Science Foundation Series

Preț: 71197 lei

Preț vechi: 86827 lei
-18% Nou

Puncte Express: 1068

Preț estimativ în valută:
13628 14290$ 11260£

Carte tipărită la comandă

Livrare economică 29 ianuarie-12 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789819992577
ISBN-10: 9819992575
Ilustrații: XI, 158 p. 1 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.42 kg
Ediția:1st ed. 2024
Editura: Springer Nature Singapore
Colecția Springer
Seriile Infosys Science Foundation Series, Infosys Science Foundation Series in Mathematical Sciences

Locul publicării:Singapore, Singapore

Cuprins

1 Manifolds and Submanifolds Reviewed.- 2 Lie Group And Lie Derivative.- 3 Conformal Transformations.- 4 Conformal Vector Fields.- 5 Integral Formulas And Conformal Vector Fields.

Notă biografică

Ramesh Sharma is Professor of Mathematics at the University of New Haven in Connecticut, USA, as well as Adjunct Professor at Sri Sathya Sai Institute of Higher Learning in Puttaparthi, Andhra Pradesh India. He earned his B.Sc. (Hons.) degree in 1974, M.Sc. degree in Mathematics in 1976, and his Ph.D. in Mathematics in 1980, all from Banaras Hindu University in India. He later obtained a second Ph.D. in Mathematics in 1986 from the University of Windsor in Canada. He specializes in contact, conformal, and Lorentzian geometries and has published over 100 research articles. He has also been recognized with various prestigious awards such as the Fulbright Lecturing Grant (India) in 2005, the Yale University Visiting Faculty Fellowship, and a Travel Fellowship of Connecticut Space Grant College Consortium (NASA).

Sharief Deshmukh is Professor of Mathematics at King Saud University in Riyadh, Saudi Arabia. He obtained his B.Sc. and M.Sc. degrees in Mathematics from Mathwada University, India, in 1972 and 1974, respectively. He then went on to pursue his M.Phil. and Ph.D. degrees in Mathematics from Aligarh Muslim University, India, in 1978 and 1980, respectively. His research interests span a diverse range of topics in mathematics, including submanifolds, the spectrum of Riemannian manifolds, Lie groups, conformal geometry, Ricci solitons, differential equations on manifolds, and Yamabe solitons.

With more than 186 research papers published in highly respected international journals, he has delivered lectures at numerous conferences and research institutions, including the Indian Institute of Technology Delhi, India, and the International Center of Theoretical Physics in Trieste, Italy. He has also supervised several M.S. theses and Ph.D. theses at King Saud University, covering various topics in differential geometry.

Textul de pe ultima copertă

This book provides an up-to-date introduction to the theory of manifolds, submanifolds, semi-Riemannian geometry and warped product geometry, and their applications in geometry and physics. It then explores the properties of conformal vector fields and conformal transformations, including their fixed points, essentiality and the Lichnerowicz conjecture. Later chapters focus on the study of conformal vector fields on special Riemannian and Lorentzian manifolds, with a special emphasis on general relativistic spacetimes and the evolution of conformal vector fields in terms of initial data.

The book also delves into the realm of Ricci flow and Ricci solitons, starting with motivations and basic results and moving on to more advanced topics within the framework of Riemannian geometry. The main emphasis of the book is on the interplay between conformal vector fields and Ricci solitons, and their applications in contact geometry. The book highlights the fact that Nil-solitons and Sol-solitons naturally arise in the study of Ricci solitons in contact geometry. Finally, the book gives a comprehensive overview of generalized quasi-Einstein structures and Yamabe solitons and their roles in contact geometry. It would serve as a valuable resource for graduate students and researchers in mathematics and physics as well as those interested in the intersection of geometry and physics.

Caracteristici

Masters manifold theory, conformal transformations, and Ricci solitons to enhance your skills in geometry and physics Discovers the interplay between conformal vector fields and Ricci solitons and their roles in contact geometry Gains a comprehensive understanding of generalized quasi-Einstein structures and Yamabe solitons in contact geometry