Cantitate/Preț
Produs

Correlation between Structural and Electronic Properties of Co-Evaporated Doped Organic Thin Films

Autor Daniela Donhauser
en Limba Engleză Paperback – 23 oct 2014
Devices based on organic semiconductors, like organic light emitting diodes (OLEDs) or organic solar cells, often comprise electrochemically doped charge transport layers, which improve the performance of these devices. Although very efficient devices can be realized nowadays, a comprehensive description of the physical processes taking place in electrochemically doped thin films is still missing. For instance, it was shown for a variety of different material systems that the doping efficiency, defined as the number of free charge carriers compared to the number of incorporated dopants, often amounts to only a few per cent. The organic semiconductor CBP (4,4¿-Bis(N-carbazolyl)-1,1¿-biphenyl), doped with the transition metal oxide molybdenum oxide (MoO3), is used here as a model system to investigate the origin for this low doping efficiency. Results from different measurement techniques, like electron tomography, EF-TEM, PES, FTIR-spectroscopy and (temperature- dependent) electrical measurements were correlated to get insight into the origin of the low doping effiencies and to obtain a model to describe charge transport in MoO3-doped CBP films as a function of the doping concentration.
Citește tot Restrânge

Preț: 21270 lei

Nou

Puncte Express: 319

Preț estimativ în valută:
4071 4234$ 3407£

Carte tipărită la comandă

Livrare economică 10-17 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783954048304
ISBN-10: 3954048302
Pagini: 166
Dimensiuni: 148 x 210 x 9 mm
Greutate: 0.22 kg
Editura: Cuvillier

Notă biografică

10/2003-10/2009 Studium der Physik (Diplom) an der Universität Ulm 09/2006 ¿ 04/2007 Physikstudium an der University of Waterloo (Kanada) 10/2008-10/2009 Diplomarbeit in der Abteilung für Halbleiterphysik (Universität Ulm) 11/2009-12/2009 wissenschaftliche Mitarbeiterin in der Abteilung für Halbleiterphysik, Universität Ulm 02/2010-11/2013 Doktorarbeit am Institut für Hochfrequenztechnik und Photonik (Fachbereich Elektrotechnik, TU Braunschweig) Dienstort: Innovationlab GmbH in Heidelberg