Cracking the Machine Learning Code: Technicality or Innovation?: Studies in Computational Intelligence, cartea 1155
Autor KC Santosh, Rodrigue Rizk, Siddhi K. Bajracharyaen Limba Engleză Hardback – 9 mai 2024
Din seria Studies in Computational Intelligence
- 50% Preț: 264.48 lei
- 20% Preț: 1138.71 lei
- 20% Preț: 970.01 lei
- 20% Preț: 1428.22 lei
- 20% Preț: 168.78 lei
- 18% Preț: 1093.52 lei
- 20% Preț: 565.38 lei
- 20% Preț: 638.34 lei
- 20% Preț: 1030.03 lei
- 20% Preț: 1552.26 lei
- 20% Preț: 632.66 lei
- 20% Preț: 646.41 lei
- 20% Preț: 976.52 lei
- 20% Preț: 974.09 lei
- 20% Preț: 973.27 lei
- 20% Preț: 1146.00 lei
- 20% Preț: 1420.10 lei
- 20% Preț: 1024.36 lei
- 20% Preț: 1030.03 lei
- 20% Preț: 1028.39 lei
- 18% Preț: 2458.20 lei
- 20% Preț: 972.45 lei
- 20% Preț: 1146.00 lei
- 20% Preț: 1144.40 lei
- 20% Preț: 1025.17 lei
- 20% Preț: 1435.50 lei
- 18% Preț: 1379.82 lei
- 18% Preț: 1105.93 lei
- 20% Preț: 1021.92 lei
- 20% Preț: 991.11 lei
- 20% Preț: 1027.60 lei
- 20% Preț: 1253.88 lei
- 20% Preț: 1022.74 lei
- 20% Preț: 971.65 lei
- 20% Preț: 1150.03 lei
- 20% Preț: 1142.76 lei
- 20% Preț: 1041.37 lei
- 20% Preț: 1144.40 lei
- 20% Preț: 1146.83 lei
- 20% Preț: 1434.72 lei
- 18% Preț: 988.76 lei
- 20% Preț: 980.55 lei
- 20% Preț: 1038.11 lei
- 20% Preț: 1262.78 lei
- 20% Preț: 977.30 lei
- 20% Preț: 1031.01 lei
- 20% Preț: 927.84 lei
- 20% Preț: 1153.30 lei
- 20% Preț: 1433.08 lei
- 20% Preț: 1027.60 lei
Preț: 929.69 lei
Preț vechi: 1162.11 lei
-20% Nou
Puncte Express: 1395
Preț estimativ în valută:
178.01€ • 185.36$ • 147.69£
178.01€ • 185.36$ • 147.69£
Carte indisponibilă temporar
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789819727193
ISBN-10: 9819727197
Pagini: 127
Ilustrații: XIX, 127 p. 110 illus., 103 illus. in color.
Dimensiuni: 155 x 235 mm
Ediția:2024
Editura: Springer Nature Singapore
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Singapore, Singapore
ISBN-10: 9819727197
Pagini: 127
Ilustrații: XIX, 127 p. 110 illus., 103 illus. in color.
Dimensiuni: 155 x 235 mm
Ediția:2024
Editura: Springer Nature Singapore
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Singapore, Singapore
Cuprins
Chapter 1. Introduction.- Chapter 2. Data modalities and preprocessing.- Chapter 3. Basic building blocks: From shallow to deep.- Chapter 4. Experimental Setup.- Chapter 5: Case study: from numbers to images.- Chapter 6: Extension: Multimodal learning representation.- Chapter 7. Where is the innovation?.
Notă biografică
Prof. KC Santosh—a highly accomplished AI expert—is the chair of the Department of Computer Science and the founding director of the Applied AI Research Lab at the University of South Dakota. He is also served the National Institutes of Health as a research fellow and LORIA Research Center as a postdoctoral research scientist, in collaboration with industrial partner, ITESOFT, France. He earned his Ph.D. in Computer Science—Artificial Intelligence from INRIA Nancy Grand East Research Center (France). With funding exceeding $2 million from sources like DOD, NSF, and SDBOR, he has authored 10 books and over 250 peer-reviewed research articles, including IEEE TPAMI. He serves as an associate editor for esteemed journals such as IEEE Transactions on AI, Int. J of Machine Learning & Cybernetics, and Int. J of Pattern Recognition & Artificial Intelligence. He, founder of AI programs at USD, has significantly boosted graduate enrollment by over 3,000% in just three years, establishing USD as a leader in AI within South Dakota.
Dr. Rodrigue Rizk is an assistant professor at the University of South Dakota, holding a B.E. degree in computer and communication engineering with Summa Cum Laude highest honor distinction from Notre Dame University. He earned both his M.S. and Ph.D. degrees in Computer Engineering from the University of Louisiana at Lafayette, maintaining 4.0 GPA. Specializing in the dynamic interplay between software and hardware, his research interests span high-level computational systems, artificial intelligence, quantum computing, and more. He is a licensed professional engineer, a member of the Order of the Engineer, and holds various accolades, including the Richard G. and Mary B. Neiheisel endowed fellowship. He is a lifetime member of the Phi Kappa Phi honor society and a professional member of ACM and IEEE. His contributions have earned him numerous awards, including the President’s Award for Educational Excellence and Outstanding Academic Achievement.
Mr. Siddhi K Bajracharya is a research fellow for the Applied AI Research Lab, Department of Computer Science at the University of South Dakota. His research study focuses on building generic and/or generalized machine learning models for multiple data types: numbers, texts, and images.
Dr. Rodrigue Rizk is an assistant professor at the University of South Dakota, holding a B.E. degree in computer and communication engineering with Summa Cum Laude highest honor distinction from Notre Dame University. He earned both his M.S. and Ph.D. degrees in Computer Engineering from the University of Louisiana at Lafayette, maintaining 4.0 GPA. Specializing in the dynamic interplay between software and hardware, his research interests span high-level computational systems, artificial intelligence, quantum computing, and more. He is a licensed professional engineer, a member of the Order of the Engineer, and holds various accolades, including the Richard G. and Mary B. Neiheisel endowed fellowship. He is a lifetime member of the Phi Kappa Phi honor society and a professional member of ACM and IEEE. His contributions have earned him numerous awards, including the President’s Award for Educational Excellence and Outstanding Academic Achievement.
Mr. Siddhi K Bajracharya is a research fellow for the Applied AI Research Lab, Department of Computer Science at the University of South Dakota. His research study focuses on building generic and/or generalized machine learning models for multiple data types: numbers, texts, and images.
Caracteristici
Covers three primary data types: numerical, textual, and image data Offers GitHub source code encompassing fundamental components and advanced machine learning tools Serves as a reference for researchers, students, practitioners, and policymakers