Cantitate/Preț
Produs

Data-Driven Fault Detection for Industrial Processes: Canonical Correlation Analysis and Projection Based Methods

Autor Zhiwen Chen
en Limba Engleză Paperback – 9 ian 2017
Zhiwen Chen aims to develop advanced fault detection (FD) methods for the monitoring of industrial processes. With the ever increasing demands on reliability and safety in industrial processes, fault detection has become an important issue. Although the model-based fault detection theory has been well studied in the past decades, its applications are limited to large-scale industrial processes because it is difficult to build accurate models. Furthermore, motivated by the limitations of existing data-driven FD methods, novel canonical correlation analysis (CCA) and projection-based methods are proposed from the perspectives of process input and output data, less engineering effort and wide application scope. For performance evaluation of FD methods, a new index is also developed.
Citește tot Restrânge

Preț: 48204 lei

Preț vechi: 56712 lei
-15% Nou

Puncte Express: 723

Preț estimativ în valută:
9228 9491$ 7656£

Carte tipărită la comandă

Livrare economică 19 februarie-05 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783658167554
ISBN-10: 3658167556
Pagini: 112
Ilustrații: XIX, 112 p. 39 illus.
Dimensiuni: 148 x 210 x 7 mm
Greutate: 0.17 kg
Ediția:1st ed. 2017
Editura: Springer Fachmedien Wiesbaden
Colecția Springer Vieweg
Locul publicării:Wiesbaden, Germany

Cuprins

A New Index for Performance Evaluation of FD Methods.- CCA-based FD Method for the Monitoring of Stationary Processes.- Projection-based FD Method for the Monitoring of Dynamic Processes.- Benchmark Study and Real-Time Implementation.
 

Notă biografică

Zhiwen Chen’s research interests include multivariate statistical process monitoring, model-based and data-driven fault diagnosis as well as their application to industrial processes. He is currently working at the School of Information Science and Engineering at Central South University, China.



Textul de pe ultima copertă

Zhiwen Chen aims to develop advanced fault detection (FD) methods for the monitoring of industrial processes. With the ever increasing demands on reliability and safety in industrial processes, fault detection has become an important issue. Although the model-based fault detection theory has been well studied in the past decades, its applications are limited to large-scale industrial processes because it is difficult to build accurate models. Furthermore, motivated by the limitations of existing data-driven FD methods, novel canonical correlation analysis (CCA) and projection-based methods are proposed from the perspectives of process input and output data, less engineering effort and wide application scope. For performance evaluation of FD methods, a new index is also developed.

Contents
  • A New Index for Performance Evaluation of FD Methods
  • CCA-based FD Method for the Monitoring of Stationary Processes
  • Projection-based FD Method for the Monitoring of Dynamic Processes 
  • Benchmark Study and Real-Time Implementation
Target Groups
  • Researchers and students in the field of process control and statistical hypothesis testing
  • Research and development engineers in the process industry
About the Author
Zhiwen Chen’s research interests include multivariate statistical process monitoring, model-based and data-driven fault diagnosis as well as their application to industrial processes. He is currently working at the School of Information Science and Engineering at Central South University, China.


Caracteristici

Publication in the field of technical sciences