Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning
Editat de Miguel A. Mendez, Andrea Ianiro, Bernd R. Noack, Steven L. Bruntonen Limba Engleză Hardback – feb 2023
Preț: 430.67 lei
Preț vechi: 468.12 lei
-8% Nou
Puncte Express: 646
Preț estimativ în valută:
82.42€ • 86.70$ • 68.77£
82.42€ • 86.70$ • 68.77£
Carte disponibilă
Livrare economică 19 decembrie 24 - 02 ianuarie 25
Livrare express 04-10 decembrie pentru 50.92 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781108842143
ISBN-10: 1108842143
Pagini: 468
Dimensiuni: 176 x 251 x 25 mm
Greutate: 1.02 kg
Ediția:Nouă
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom
ISBN-10: 1108842143
Pagini: 468
Dimensiuni: 176 x 251 x 25 mm
Greutate: 1.02 kg
Ediția:Nouă
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom
Cuprins
Part I. Motivation: 1. Analysis, modeling and control of the cylinder wake B. R. Noack, A. Ehlert, C. N. Nayeri and M. Morzynski; 2. Coherent structures in turbulence: a data science perspective J. Jiménez; 3. Machine learning in fluids: pairing methods with problems S. Brunton; Part II. Methods from Signal Processing: 4. Continuous and discrete LTI systems M. A. Mendez; 5. Time-frequency analysis and wavelets S. Discetti; Part III. Data-Driven Decompositions: 6. The proper orthogonal decomposition S. Dawson; 7. The dynamic mode decomposition: from Koopman theory to applications P. J. Schmid; 8. Generalized and multiscale modal analysis M. A. Mendez; 9. Good practice and applications of data-driven modal analysis A. Ianiro; Part IV. Dynamical Systems: 10. Linear dynamical systems and control S. Dawson; 11. Nonlinear dynamical systems S. Brunton; 12. Methods for system identification S. Brunton; 13. Modern tools for the stability analysis of fluid flows P. J. Schmid; Part V. Applications: 14. Machine learning for reduced-order modeling B. R. Noack, D. Fernex and R. Semaan; 15. Advancing reacting flow simulations with data-driven models K. Zdybal, G. D'Alessio, G. Aversano, M. R. Malik, A. Coussement, J. C. Sutherland and A. Parente; 16. Reduced-order modeling for aerodynamic applications and multidisciplinary design optimization S. Görtz, P. Bekemeyer, M. Abu-Zurayk, T. Franz and M. Ripepi; 17. Machine learning for turbulence control B. R. Noack, G. Y. Cornejo Maceda, F. Lusseyran; 18. Deep reinforcement learning applied to active flow control J. Rabault and A. Kuhnle; Part VI. Perspectives: 19. The Computer as scientist J. Jiménez; References.
Descriere
This is the first book dedicated to data-driven methods for fluid dynamics, with applications in analysis, modeling, control, and closures.