Cantitate/Preț
Produs

Data Management Technologies and Applications: 7th International Conference, DATA 2018, Porto, Portugal, July 26–28, 2018, Revised Selected Papers: Communications in Computer and Information Science, cartea 862

Editat de Christoph Quix, Jorge Bernardino
en Limba Engleză Paperback – 20 iul 2019
This book constitutes the thoroughly refereed proceedings of the 7th International Conference on Data Management Technologies and Applications, DATA 2018, held in Porto, Portugal, in July 2018. The 9 revised full papers were carefully reviewed and selected from 69 submissions. The papers deal with the following topics: databases, big data, data mining, data management, data security, and other aspects of information systems and technology involving advanced applications of data.
Citește tot Restrânge

Din seria Communications in Computer and Information Science

Preț: 32879 lei

Preț vechi: 41098 lei
-20% Nou

Puncte Express: 493

Preț estimativ în valută:
6293 6545$ 5274£

Carte tipărită la comandă

Livrare economică 14-28 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030266356
ISBN-10: 3030266354
Pagini: 211
Ilustrații: XI, 211 p. 117 illus., 51 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.32 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Communications in Computer and Information Science

Locul publicării:Cham, Switzerland

Cuprins

Constructing a Data Visualization Recommender System.- A Comprehensive Prediction Approach for Hardware Asset Management.- Linear vs. Symbolic Regression for Adaptive Parameter Setting in Manufacturing Process.- Graph Pattern Index for Neo4j Graph Databases.- Architectural Considerations for a Data Access Marketplace based Upon API Management.- FPGA vs. SIMD: Comparison for Main Memory-based Fast Column Scan.- Infectious Disease Prediction Modelling using Synthetic Optimization Approaches.- Concept Recognition with Convolutional Neural Networks to Optimize Keyphraze Extraction.- Deep Neural Trading: Comparative Study with Feed Forward, Recurrent and Autoencoder Networks.