Data Management Using Stata: A Practical Handbook
Autor Michael N. Mitchellen Limba Engleză Paperback – 24 mai 2010
Preț: 384.67 lei
Preț vechi: 555.11 lei
-31% Nou
Puncte Express: 577
Preț estimativ în valută:
73.61€ • 77.44$ • 61.10£
73.61€ • 77.44$ • 61.10£
Comandă specială
Livrare economică 26 decembrie 24 - 09 ianuarie 25
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781597180764
ISBN-10: 1597180769
Pagini: 387
Ilustrații: black & white tables
Dimensiuni: 184 x 235 x 23 mm
Greutate: 0.79 kg
Ediția:1
Editura: Stata Press
Colecția Stata Press
Locul publicării:United States
ISBN-10: 1597180769
Pagini: 387
Ilustrații: black & white tables
Dimensiuni: 184 x 235 x 23 mm
Greutate: 0.79 kg
Ediția:1
Editura: Stata Press
Colecția Stata Press
Locul publicării:United States
Public țintă
Academic, Postgraduate, and Professional Practice & DevelopmentCuprins
Introduction. Reading and Writing Datasets. Data Cleaning. Labeling Datasets. Creating Variables. Combining Datasets. Processing Observations across Subgroups. Changing the Shape of Your Data. Programming for Data Management. Additional Resources. Appendix. Index.
Notă biografică
Michael N. Mitchell is a senior statistician in health services research. For 12 years, he worked in the Statistical Consulting Group of the UCLA Academic Technology Services.
Recenzii
The author uses a "learning by example" approach in the book. Overall this works well …
—Morteza Marzjarani, The American Statistician, November 2011
—Morteza Marzjarani, The American Statistician, November 2011
Descriere
Using simple language and illustrative examples, this book comprehensively covers data management tasks that bridge the gap between raw data and statistical analysis. Rather than focus on clusters of commands, the author takes a modular approach that enables readers to quickly identify and implement the necessary task without having to access background information first. Each section presents a self-contained lesson that uses examples to illustrate a particular data management task, such as creating data variables and automating error-checking. The text also discusses common pitfalls and how to avoid them, providing strategic data management advice.