Data Mining: Practical Machine Learning Tools and Techniques
Autor James Foulds, Ian H. Witten, Eibe Frank, Mark A. Hall, Christopher J. Palen Limba Engleză Paperback – 22 apr 2025
- Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
- Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
- Features in-depth information on deep learning and probabilistic models
- Covers performance improvement techniques, including input preprocessing and combining output from different methods
- Provides an appendix introducing the WEKA machine learning workbench and links to algorithm implementations in the software
Preț: 336.72 lei
Preț vechi: 519.99 lei
-35% Nou
Puncte Express: 505
Preț estimativ în valută:
64.44€ • 66.94$ • 53.53£
64.44€ • 66.94$ • 53.53£
Carte nepublicată încă
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780443158889
ISBN-10: 0443158886
Pagini: 688
Dimensiuni: 191 x 235 mm
Greutate: 0.45 kg
Ediția:5
Editura: ELSEVIER SCIENCE
ISBN-10: 0443158886
Pagini: 688
Dimensiuni: 191 x 235 mm
Greutate: 0.45 kg
Ediția:5
Editura: ELSEVIER SCIENCE
Cuprins
PART I: INTRODUCTION TO DATA MINING 1. What’s it all about? 2. Input: concepts, instances, attributes 3. Output: knowledge representation 4. Algorithms: the basic methods 5. Credibility: evaluating what’s been learned 6. Preparation: data preprocessing and exploratory data analysis 7. Ethics: what are the impacts of what's been learned? PART II: MORE ADVANCED MACHINE LEARNING SCHEMES 8. Ensemble learning 9. Extending instance-based and linear models 10. Deep learning: fundamentals 11. Advanced deep learning methods 12. Beyond supervised and unsupervised learning 13. Probabilistic methods: fundamentals 14. Advanced probabilistic methods 15. Moving on: applications and their consequences