Cantitate/Preț
Produs

Data Science: Grundlagen, Statistik und maschinelles Lernen

Autor Matthias Plaue
de Limba Germană Paperback – 14 oct 2021
Dieses Lehrbuch bietet eine gut verständliche Einführung in mathematische Konzepte und algorithmische Verfahren, die der Data Science zugrunde liegen. Es deckt hierfür wesentliche Teile der Datenorganisation, der deskriptiven und inferenziellen Statistik, der Wahrscheinlichkeitstheorie und des maschinellen Lernens ab.

Das Werk ermöglicht den Leserinnen und Lesern ein tiefes und grundlegendes Verständnis der Konzepte durch klare und mathematisch fundierte Vermittlung der Inhalte. Darüber hinaus stellt es durch zahlreiche, anhand realer Daten erstellter Anwendungsbeispiele einen starken Praxisbezug her. Dadurch ist es besonders für Lehrende und Studierende an technischen Hochschulen geeignet, bietet aber auch Quereinsteigenden mit mathematischem Grundwissen einen guten Einstieg und Überblick

Citește tot Restrânge

Preț: 19574 lei

Preț vechi: 24467 lei
-20% Nou

Puncte Express: 294

Preț estimativ în valută:
3746 3865$ 3170£

Carte tipărită la comandă

Livrare economică 28 februarie-06 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783662634882
ISBN-10: 3662634880
Ilustrații: XXIII, 314 S. 68 Abb.
Dimensiuni: 155 x 235 mm
Ediția:1. Aufl. 2021
Editura: Springer Berlin, Heidelberg
Colecția Springer Spektrum
Locul publicării:Berlin, Heidelberg, Germany

Cuprins

Einführung.- Elemente der Datenorganisation.- Deskriptive Statistik.- Wahrscheinlichkeitstheorie.- Inferenzstatistik.- Multivariate Statistik.- Überwachtes maschinelles Lernen.- Unüberwachtes maschinelles Lernen.- Maschinelles Lernen in der Anwendung.- Ergänzende Literatur.- Sachverzeichnis.

Notă biografică

Matthias Plaue arbeitet als Data Scientist und nutzt mathematische Methoden in täglicher Praxis für die Umsetzung von Algorithmen im Bereich der Datenanalyse und künstlichen Intelligenz. Neben der Forschung in seinen Interessengebieten hat er viele Jahre intensiv Studierende beim Verstehen von Mathematik unterstützt.

Textul de pe ultima copertă

Dieses Lehrbuch bietet eine gut verständliche Einführung in mathematische Konzepte und algorithmische Verfahren, die der Data Science zugrunde liegen. Es deckt hierfür wesentliche Teile der Datenorganisation, der deskriptiven und inferenziellen Statistik, der Wahrscheinlichkeitstheorie und des maschinellen Lernens ab.

Das Werk ermöglicht den Leserinnen und Lesern ein tiefes und grundlegendes Verständnis der Konzepte durch klare und mathematisch fundierte Vermittlung der Inhalte. Darüber hinaus stellt es durch zahlreiche, anhand realer Daten erstellter Anwendungsbeispiele einen starken Praxisbezug her. Dadurch ist es besonders für Lehrende und Studierende an technischen Hochschulen geeignet, bietet aber auch Quereinsteigenden mit mathematischem Grundwissen einen guten Einstieg und Überblick.
Der Inhalt
Elemente der Datenorganisation - Deskriptive Statistik - Wahrscheinlichkeitstheorie - Inferenzstatistik - Multivariate Statistik - Überwachtes maschinelles Lernen - Unüberwachtes maschinelles Lernen - Maschinelles Lernen in der Anwendung

Der Autor
Matthias Plaue arbeitet als Data Scientist und nutzt mathematische Methoden in täglicher Praxis für die Umsetzung von Algorithmen im Bereich der Datenanalyse und künstlichen Intelligenz. Neben der Forschung in seinen Interessengebieten hat er viele Jahre intensiv Studierende beim Verstehen von Mathematik unterstützt.

Caracteristici

Bietet eine gut verständliche Einführung in die Mathematik für Data Science Mit zahlreichen Anwendungsbeispielen Errata unter http://dx.doi.org/10.13140/RG.2.2.12672.97282/2