Data Science: Grundlagen, Statistik und maschinelles Lernen
Autor Matthias Plauede Limba Germană Paperback – 14 oct 2021
Das Werk ermöglicht den Leserinnen und Lesern ein tiefes und grundlegendes Verständnis der Konzepte durch klare und mathematisch fundierte Vermittlung der Inhalte. Darüber hinaus stellt es durch zahlreiche, anhand realer Daten erstellter Anwendungsbeispiele einen starken Praxisbezug her. Dadurch ist es besonders für Lehrende und Studierende an technischen Hochschulen geeignet, bietet aber auch Quereinsteigenden mit mathematischem Grundwissen einen guten Einstieg und Überblick
Preț: 195.74 lei
Preț vechi: 244.67 lei
-20% Nou
Puncte Express: 294
Preț estimativ în valută:
37.46€ • 38.65$ • 31.70£
37.46€ • 38.65$ • 31.70£
Carte tipărită la comandă
Livrare economică 28 februarie-06 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783662634882
ISBN-10: 3662634880
Ilustrații: XXIII, 314 S. 68 Abb.
Dimensiuni: 155 x 235 mm
Ediția:1. Aufl. 2021
Editura: Springer Berlin, Heidelberg
Colecția Springer Spektrum
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3662634880
Ilustrații: XXIII, 314 S. 68 Abb.
Dimensiuni: 155 x 235 mm
Ediția:1. Aufl. 2021
Editura: Springer Berlin, Heidelberg
Colecția Springer Spektrum
Locul publicării:Berlin, Heidelberg, Germany
Cuprins
Einführung.- Elemente der Datenorganisation.- Deskriptive Statistik.- Wahrscheinlichkeitstheorie.- Inferenzstatistik.- Multivariate Statistik.- Überwachtes maschinelles Lernen.- Unüberwachtes maschinelles Lernen.- Maschinelles Lernen in der Anwendung.- Ergänzende Literatur.- Sachverzeichnis.
Notă biografică
Matthias Plaue arbeitet als Data Scientist und nutzt mathematische Methoden in täglicher Praxis für die Umsetzung von Algorithmen im Bereich der Datenanalyse und künstlichen Intelligenz. Neben der Forschung in seinen Interessengebieten hat er viele Jahre intensiv Studierende beim Verstehen von Mathematik unterstützt.
Textul de pe ultima copertă
Dieses Lehrbuch bietet eine gut verständliche Einführung in mathematische Konzepte und algorithmische Verfahren, die der Data Science zugrunde liegen. Es deckt hierfür wesentliche Teile der Datenorganisation, der deskriptiven und inferenziellen Statistik, der Wahrscheinlichkeitstheorie und des maschinellen Lernens ab.
Das Werk ermöglicht den Leserinnen und Lesern ein tiefes und grundlegendes Verständnis der Konzepte durch klare und mathematisch fundierte Vermittlung der Inhalte. Darüber hinaus stellt es durch zahlreiche, anhand realer Daten erstellter Anwendungsbeispiele einen starken Praxisbezug her. Dadurch ist es besonders für Lehrende und Studierende an technischen Hochschulen geeignet, bietet aber auch Quereinsteigenden mit mathematischem Grundwissen einen guten Einstieg und Überblick.
Der Inhalt
Elemente der Datenorganisation - Deskriptive Statistik - Wahrscheinlichkeitstheorie - Inferenzstatistik - Multivariate Statistik - Überwachtes maschinelles Lernen - Unüberwachtes maschinelles Lernen - Maschinelles Lernen in der Anwendung
Der Autor
Matthias Plaue arbeitet als Data Scientist und nutzt mathematische Methoden in täglicher Praxis für die Umsetzung von Algorithmen im Bereich der Datenanalyse und künstlichen Intelligenz. Neben der Forschung in seinen Interessengebieten hat er viele Jahre intensiv Studierende beim Verstehen von Mathematik unterstützt.
Das Werk ermöglicht den Leserinnen und Lesern ein tiefes und grundlegendes Verständnis der Konzepte durch klare und mathematisch fundierte Vermittlung der Inhalte. Darüber hinaus stellt es durch zahlreiche, anhand realer Daten erstellter Anwendungsbeispiele einen starken Praxisbezug her. Dadurch ist es besonders für Lehrende und Studierende an technischen Hochschulen geeignet, bietet aber auch Quereinsteigenden mit mathematischem Grundwissen einen guten Einstieg und Überblick.
Der Inhalt
Elemente der Datenorganisation - Deskriptive Statistik - Wahrscheinlichkeitstheorie - Inferenzstatistik - Multivariate Statistik - Überwachtes maschinelles Lernen - Unüberwachtes maschinelles Lernen - Maschinelles Lernen in der Anwendung
Der Autor
Matthias Plaue arbeitet als Data Scientist und nutzt mathematische Methoden in täglicher Praxis für die Umsetzung von Algorithmen im Bereich der Datenanalyse und künstlichen Intelligenz. Neben der Forschung in seinen Interessengebieten hat er viele Jahre intensiv Studierende beim Verstehen von Mathematik unterstützt.
Caracteristici
Bietet eine gut verständliche Einführung in die Mathematik für Data Science Mit zahlreichen Anwendungsbeispielen Errata unter http://dx.doi.org/10.13140/RG.2.2.12672.97282/2