Deep Learning Classifiers with Memristive Networks: Theory and Applications: Modeling and Optimization in Science and Technologies, cartea 14
Editat de Alex Pappachen Jamesen Limba Engleză Hardback – 17 apr 2019
Din seria Modeling and Optimization in Science and Technologies
- 24% Preț: 700.63 lei
- 15% Preț: 655.83 lei
- 20% Preț: 1053.58 lei
- 20% Preț: 651.36 lei
- 15% Preț: 489.34 lei
- 15% Preț: 637.13 lei
- 20% Preț: 593.27 lei
- 18% Preț: 1106.29 lei
- 20% Preț: 1169.21 lei
- 20% Preț: 641.36 lei
- 18% Preț: 958.84 lei
- 20% Preț: 998.05 lei
- 20% Preț: 1271.37 lei
- 15% Preț: 642.83 lei
- 18% Preț: 1115.99 lei
- 18% Preț: 958.22 lei
Preț: 1152.17 lei
Preț vechi: 1440.21 lei
-20% Nou
Puncte Express: 1728
Preț estimativ în valută:
220.66€ • 227.35$ • 184.85£
220.66€ • 227.35$ • 184.85£
Carte tipărită la comandă
Livrare economică 22 februarie-08 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030145224
ISBN-10: 3030145220
Pagini: 600
Ilustrații: XIII, 213 p. 124 illus., 102 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.5 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Modeling and Optimization in Science and Technologies
Locul publicării:Cham, Switzerland
ISBN-10: 3030145220
Pagini: 600
Ilustrații: XIII, 213 p. 124 illus., 102 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.5 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Modeling and Optimization in Science and Technologies
Locul publicării:Cham, Switzerland
Cuprins
Available in MS
Textul de pe ultima copertă
This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.
Caracteristici
Offers an introduction to deep neural network architectures Describes in detail different kind of neuro-memristive systems, circuits and models Shows how to implement different kind of neural networks in analog memristive circuits