Deep Learning for Biomedical Image Reconstruction
Editat de Jong Chul Ye, Yonina C. Eldar, Michael Unseren Limba Engleză Hardback – 29 sep 2023
Preț: 670.12 lei
Preț vechi: 752.94 lei
-11% Nou
Puncte Express: 1005
Preț estimativ în valută:
128.27€ • 137.92$ • 106.93£
128.27€ • 137.92$ • 106.93£
Carte disponibilă
Livrare economică 28 noiembrie-12 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781316517512
ISBN-10: 1316517519
Pagini: 400
Dimensiuni: 251 x 175 x 26 mm
Greutate: 0.89 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom
ISBN-10: 1316517519
Pagini: 400
Dimensiuni: 251 x 175 x 26 mm
Greutate: 0.89 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom
Cuprins
Part I. Theory of Deep Learning for Image Reconstruction Michael Unser: 1. Formalizing deep neural networks Jong Chul Ye and Sangmin Lee; 2. Geometry of deep learning Saiprasad Ravishankar, Zhishen Huang, Michael McCann and Siqi Ye; 3. Model-based reconstruction with learning: from unsupervised to supervised and beyond Yuelong Li, Or Bar-Shira, Vishal Monga and Yonina C. Eldar; 4. Deep algorithm unrolling for biomedical; Part II. Deep Learning Architecture for Various Imaging Modalities Haimiao Zhang, Bin Dong, Ge Wang and Baodong Liu: 5. Deep learning for CT image reconstruction Guang-Hong Chen, Chengzhu Zhang, Yinsheng Li, Yoseob Han and Jong Chul Ye; 6. Deep learning in CT reconstruction: bring the measured data to tasks Patricia Johnson and Florian Knoll; 7. Overview deep learning reconstruction of accelerated MRI Mathews Jacob, Hemant K. Aggarwal and Qing Zou; 8. Model-based deep learning algorithms for inverse problems Mehmet Akcakaya, Gyutaek Oh, Jong Chul Ye; 9. k-space deep learning for MR reconstruction and artifact removal Ruud J. G. van Sloun, Jong Chul Ye and Yonina C Eldar; 10. Deep learning for ultrasound beamforming Jaeyoung Huh, Shujaat Khan and Jong Chul Ye; 11. Ultrasound image artifact removal using deep neural network; Part III. Generative Models for Biomedical Imaging Jaejun Yoo, Michael Unser: 12. Deep generative models for biomedical image reconstruction Tolga C¸ukur, Mahmut Yurt, Salman Ul Hassan Dar, Hyungjin Chun and, Jong Chul Ye; 13. Image synthesis in multi-contrast MRI with generative adversarial networks Jaejun Yoo and Michael Unser; 14. Regularizing deep-neural-network paradigm for the reconstruction of dynamic magnetic resonance images Thanh-an Pham, Fangshu Yang and Michael Unser; 15. Regularizing neural network for phase unwrapping Michael T. McCann, Laur`ene Donati, Harshit Gupta and Michael Unser; 16. CryoGAN: a deep generative adversarial approach to single-particle cryo-em; Index.
Descriere
Discover the power of deep neural networks for image reconstruction with this state-of-the-art review of modern theories and applications.