Cantitate/Preț
Produs

Degenerate Nonlinear Diffusion Equations: Lecture Notes in Mathematics, cartea 2049

Autor Angelo Favini, Gabriela Marinoschi
en Limba Engleză Paperback – 9 mai 2012
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain.
From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asymptotic behaviour, discretization schemes, coefficient identification, and to introduce relevant solving methods for each of them.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 33450 lei

Nou

Puncte Express: 502

Preț estimativ în valută:
6402 6753$ 5350£

Carte tipărită la comandă

Livrare economică 31 decembrie 24 - 14 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642282843
ISBN-10: 3642282849
Pagini: 168
Ilustrații: XXI, 143 p. 12 illus., 9 illus. in color.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.25 kg
Ediția:2012
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1 Parameter identification in a parabolic-elliptic degenerate problem.- 2 Existence for diffusion degenerate problems.- 3 Existence for nonautonomous parabolic-elliptic degenerate diffusion Equations.- 4 Parameter identification in a parabolic-elliptic degenerate problem.

Textul de pe ultima copertă

The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain.
From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asymptotic behaviour, discretization schemes, coefficient identification, and to introduce relevant solving methods for each of them.

Caracteristici

Includes supplementary material: sn.pub/extras