Design and Applications of Adaptive Impedance Converters
Autor Lei Wang, Man-Chung WONG, Ziyi Baien Limba Engleză Hardback – 30 sep 2024
Adaptive impedance converters are designed to transform the impedance of an electronic system to optimize its performance. The adaptive impedance converter is typically implemented using passive and active electronic components to achieve impedance transformation. The main advantage of adaptive impedance converters is their ability to dynamically adjust the impedance to optimize system performance, which can help improve signal quality, reduce interference, and minimize power losses. Whether it is passive based adaptive impedance converters and active adaptive impedance, they both can applied into different applications including distribution system, renewable energy integration, AC/DC microgrids, traction supply system, and power amplifiers to achieve good performances and ensure efficient power transfer. The passive-based adaptive impedance converters can effectively reduce the converter rating and power loss, maintaining a large operational range. The active adaptive impedance can change its impedance varying with frequency, load conditions, or other factors to match the impedance of the source or load, providing efficient power transfer and minimizing signal reflections.
The target audience of this book is the research scholars (including master’s and Ph.D. students) in power electronics and electrical engineer.
Preț: 743.91 lei
Preț vechi: 978.83 lei
-24% Nou
Puncte Express: 1116
Preț estimativ în valută:
142.47€ • 146.79$ • 119.35£
142.47€ • 146.79$ • 119.35£
Carte tipărită la comandă
Livrare economică 18-24 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789819753185
ISBN-10: 981975318X
Pagini: 280
Ilustrații: Approx. 280 p.
Dimensiuni: 155 x 235 mm
Ediția:2024
Editura: Springer Nature Singapore
Colecția Springer
Locul publicării:Singapore, Singapore
ISBN-10: 981975318X
Pagini: 280
Ilustrații: Approx. 280 p.
Dimensiuni: 155 x 235 mm
Ediția:2024
Editura: Springer Nature Singapore
Colecția Springer
Locul publicării:Singapore, Singapore
Cuprins
Introduction.- Adaptive Impedance Converters in Distribution Systems.- Adaptive Impedance Grid Connected Inverters.- Adaptive Impedance Interlink Converters for AC/DC Microgrids.- Adaptive Impedance Converters in Co-phase Railway Traction Supply System.- Adaptive Impedance for Impedance Matching Networks for Power Amplifiers.- Conclusions and Prospective for Further Work.
Notă biografică
Lei Wang received the B.Sc. degree in Electrical and Electronics Engineering from University of Macau (UM), Macao SAR, P. R. China, in 2011, M.Sc. degree in Electronics Engineering from Hong Kong University of Science and Technology (HKUST), Hong Kong SAR, P. R. China, in 2012. and Ph.D. degree in Electrical and Computer Engineering from University of Macau (UM), Macao SAR, P. R. China, in 2017. In 2019, he joined the College of Electrical and Information Engineering, Hunan University, Changsha, China, where he is currently a Full Professor. He has authored 1 Springer book, 1 Elsevier book chapter, 20 patents (U.S.A and China) and about100 journal and conference papers (including 70 Top journals).
Man Chung WONG (senior member of IEEE since 2006 and IET Fellow since 2023) He received his bachelor's and master's degrees from the Department of Electrical and Electronic Engineering, Faculty of Science and Technology, University of Macau respectively, and his doctorate from the Department of Electrical Engineering, Tsinghua University, Beijing, China. He is currently a professor in the Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau. His research interests include integrated power electronics controllers, power electronic converters, power quality compensators, renewable energy, wireless power transfer, smart grid, and smart energy. Dr. Wong has published over 140 papers in international journals and conferences, four books on power quality in the world's largest technology publishing house (Springer), and holds 11 patents in China and the United States.
Ziyi Bai received the B.Sc. degree in electrical engineering from Hainan University, Haikou, China, in 2016, the M.Sc. degree in electrical engineering from Hunan University, Changsha, China, in 2019, and the Ph.D. degree in electrical and computer engineering with the State Key Laboratory of Internet of Things for Smart City, University of Macau, Macau. In 2023, she joined University of Macau, Macau, where she is currently a Postdoctoral Fellow. Her research interests include power filter, smart grid, renewable energy, power converter, and distributed generation.
Man Chung WONG (senior member of IEEE since 2006 and IET Fellow since 2023) He received his bachelor's and master's degrees from the Department of Electrical and Electronic Engineering, Faculty of Science and Technology, University of Macau respectively, and his doctorate from the Department of Electrical Engineering, Tsinghua University, Beijing, China. He is currently a professor in the Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau. His research interests include integrated power electronics controllers, power electronic converters, power quality compensators, renewable energy, wireless power transfer, smart grid, and smart energy. Dr. Wong has published over 140 papers in international journals and conferences, four books on power quality in the world's largest technology publishing house (Springer), and holds 11 patents in China and the United States.
Ziyi Bai received the B.Sc. degree in electrical engineering from Hainan University, Haikou, China, in 2016, the M.Sc. degree in electrical engineering from Hunan University, Changsha, China, in 2019, and the Ph.D. degree in electrical and computer engineering with the State Key Laboratory of Internet of Things for Smart City, University of Macau, Macau. In 2023, she joined University of Macau, Macau, where she is currently a Postdoctoral Fellow. Her research interests include power filter, smart grid, renewable energy, power converter, and distributed generation.
Textul de pe ultima copertă
This book provides the potential advantages of adaptive impedance converters in different applications, such as power quality compensations, AC/DC microgrids, co-phase railway traction supply systems, and underwater electroacoustic transduction systems. In these applications, the adaptive impedance converter models, topologies, and control methods are introduced in this book.
Adaptive impedance converters are designed to transform the impedance of an electronic system to optimize its performance. The adaptive impedance converter is typically implemented using passive and active electronic components to achieve impedance transformation. The main advantage of adaptive impedance converters is their ability to dynamically adjust the impedance to optimize system performance, which can help improve signal quality, reduce interference, and minimize power losses. Whether it is passive based adaptive impedance converters and active adaptive impedance, they both can applied into different applications including distribution system, renewable energy integration, AC/DC microgrids, traction supply system, and power amplifiers to achieve good performances and ensure efficient power transfer. The passive-based adaptive impedance converters can effectively reduce the converter rating and power loss, maintaining a large operational range. The active adaptive impedance can change its impedance varying with frequency, load conditions, or other factors to match the impedance of the source or load, providing efficient power transfer and minimizing signal reflections.
The target audience of this book is the research scholars (including master’s and Ph.D. students) in power electronics and electrical engineer.
Adaptive impedance converters are designed to transform the impedance of an electronic system to optimize its performance. The adaptive impedance converter is typically implemented using passive and active electronic components to achieve impedance transformation. The main advantage of adaptive impedance converters is their ability to dynamically adjust the impedance to optimize system performance, which can help improve signal quality, reduce interference, and minimize power losses. Whether it is passive based adaptive impedance converters and active adaptive impedance, they both can applied into different applications including distribution system, renewable energy integration, AC/DC microgrids, traction supply system, and power amplifiers to achieve good performances and ensure efficient power transfer. The passive-based adaptive impedance converters can effectively reduce the converter rating and power loss, maintaining a large operational range. The active adaptive impedance can change its impedance varying with frequency, load conditions, or other factors to match the impedance of the source or load, providing efficient power transfer and minimizing signal reflections.
The target audience of this book is the research scholars (including master’s and Ph.D. students) in power electronics and electrical engineer.
Caracteristici
Provides a comprehensive review of the rapidly expanding field of coupling impedance of AC-DC converters Provides a comprehensive application analysis of adaptive impedance converters Provides the in-depth discussions, characteristic analysis, and parameter design on adaptive impedance converters