Design of Low-Noise Amplifiers for Ultra-Wideband Communications
Autor Roberto Díaz Ortega, Sunil Lalchand Khemchandani, Hugo García Vázquez, Francisco Javier del Pino Suárezen Limba Engleză Hardback – 16 feb 2014
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.
Cutting-edge techniques for ultra-wideband, low-noise amplifier design
This pioneering resource presents alternatives for implementing power- and area-efficient integrated low-noise amplifiers for ultra-wideband communications. Design methodologies for distributed amplifiers, feedback amplifiers, inductor structures with reduced area, and inductorless techniques are discussed. Cowritten by international experts in industry and academia, this book addresses the state of the art in integrated circuitdesign in the context of emerging systems.Design of Low-Noise Amplifiers for Ultra-WidebandCommunications covers:
- Ultra-wideband overview and system approach
- Distributed amplifiers
- Wideband low-noise amplifiers
- Feedback wideband low-noise amplifiers
- Inductorless techniques
Preț: 578.58 lei
Preț vechi: 848.76 lei
-32% Nou
Puncte Express: 868
Preț estimativ în valută:
110.73€ • 115.02$ • 91.98£
110.73€ • 115.02$ • 91.98£
Carte tipărită la comandă
Livrare economică 31 ianuarie-11 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780071823128
ISBN-10: 0071823123
Pagini: 128
Dimensiuni: 117 x 269 x 15 mm
Greutate: 0.32 kg
Editura: McGraw Hill Education
Colecția McGraw-Hill
Locul publicării:United States
ISBN-10: 0071823123
Pagini: 128
Dimensiuni: 117 x 269 x 15 mm
Greutate: 0.32 kg
Editura: McGraw Hill Education
Colecția McGraw-Hill
Locul publicării:United States
Cuprins
Nomenclature
1 Ultra-Wideband Overview and System Approach
1.1 Introduction
1.2 History of Ultra-Wideband Communications
1.3 ECMA-368/ISO/IEC 26907 Receiver Specifications
1.3.1 Operating Frequency Band
1.3.2 Receiver Sensitivity
1.4 Receiver System Design
1.4.1 Noise Figure
1.4.2 Channel Filter and ADC Specifications
1.4.3 ADC and Frontend Gain Specifications
1.4.4 Automatic Gain Control
1.4.5 Linearity Requirements
1.4.6 Synthesizer Requirements
1.4.7 Budget Simulations
1.5 Conclusions
2 Distributed Amplifiers
2.1 Introduction
2.2 Theoretical Approach
2.3 Area Optimization
2.3.1 Compact Design
2.3.2 Stacked Inductors
2.4 Experimental Results
2.5 Conclusions
3 Wideband Low-Noise Amplifiers
3.1 Introduction
3.2 Wideband Low-Noise Amplifier
3.2.1 Narrowband Inductively Degenerated Amplifier
3.2.2 Wideband Inductively Degenerated Amplifier
3.2.3 Wideband Low-Noise Amplifier Design
3.2.4 Experimental Results
3.3 Flatness Improvement
3.3.1 Circuit Description
3.3.2 Experimental Results
3.4 Wideband Folded Cascode Amplifier
3.4.1 Narrowband Folded Cascode Amplifier
3.4.2 Wideband Folded Cascode Amplifier Topology
3.4.3 Experimental Results
3.5 Conclusions
4 Feedback Wideband Low-Noise Amplifiers
4.1 Introduction
4.2 Circuit Analysis
4.3 Modified Miniatured 3D Inductor
4.4 Circuit Design
4.5 Experimental Results
4.6 Conclusions
5 Inductorless Techniques
5.1 Introduction
5.2 Common Gate LNA
5.2.1 Input Matching and Voltage Gain
5.2.2 Noise of a CG Stage
5.2.3 Differential Operation of CG Stage
5.3 Mixer Design
5.3.1 Quadrature Mixers
5.3.2 Mixers with Current Boosting
5.4 Inductorless Operation
5.5 Experimental Results
5.5.1 Frontend I
5.5.2 Frontend II
5.5.3 Comparison Between Frontends
5.6 Conclusions
Bibliography
Index
1 Ultra-Wideband Overview and System Approach
1.1 Introduction
1.2 History of Ultra-Wideband Communications
1.3 ECMA-368/ISO/IEC 26907 Receiver Specifications
1.3.1 Operating Frequency Band
1.3.2 Receiver Sensitivity
1.4 Receiver System Design
1.4.1 Noise Figure
1.4.2 Channel Filter and ADC Specifications
1.4.3 ADC and Frontend Gain Specifications
1.4.4 Automatic Gain Control
1.4.5 Linearity Requirements
1.4.6 Synthesizer Requirements
1.4.7 Budget Simulations
1.5 Conclusions
2 Distributed Amplifiers
2.1 Introduction
2.2 Theoretical Approach
2.3 Area Optimization
2.3.1 Compact Design
2.3.2 Stacked Inductors
2.4 Experimental Results
2.5 Conclusions
3 Wideband Low-Noise Amplifiers
3.1 Introduction
3.2 Wideband Low-Noise Amplifier
3.2.1 Narrowband Inductively Degenerated Amplifier
3.2.2 Wideband Inductively Degenerated Amplifier
3.2.3 Wideband Low-Noise Amplifier Design
3.2.4 Experimental Results
3.3 Flatness Improvement
3.3.1 Circuit Description
3.3.2 Experimental Results
3.4 Wideband Folded Cascode Amplifier
3.4.1 Narrowband Folded Cascode Amplifier
3.4.2 Wideband Folded Cascode Amplifier Topology
3.4.3 Experimental Results
3.5 Conclusions
4 Feedback Wideband Low-Noise Amplifiers
4.1 Introduction
4.2 Circuit Analysis
4.3 Modified Miniatured 3D Inductor
4.4 Circuit Design
4.5 Experimental Results
4.6 Conclusions
5 Inductorless Techniques
5.1 Introduction
5.2 Common Gate LNA
5.2.1 Input Matching and Voltage Gain
5.2.2 Noise of a CG Stage
5.2.3 Differential Operation of CG Stage
5.3 Mixer Design
5.3.1 Quadrature Mixers
5.3.2 Mixers with Current Boosting
5.4 Inductorless Operation
5.5 Experimental Results
5.5.1 Frontend I
5.5.2 Frontend II
5.5.3 Comparison Between Frontends
5.6 Conclusions
Bibliography
Index