Cantitate/Preț
Produs

Diffeomorphisms of Elliptic 3-Manifolds: Lecture Notes in Mathematics, cartea 2055

Autor Sungbok Hong, John Kalliongis, Darryl McCullough, J. Hyam Rubinstein
en Limba Engleză Paperback – 28 aug 2012
This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle.
The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 34041 lei

Nou

Puncte Express: 511

Preț estimativ în valută:
6514 6853$ 5407£

Carte tipărită la comandă

Livrare economică 15-29 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642315633
ISBN-10: 3642315631
Pagini: 168
Ilustrații: X, 155 p. 22 illus.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.25 kg
Ediția:2012
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1 Elliptic 3-manifolds and the Smale Conjecture.- 2 Diffeomorphisms and Embeddings of Manifolds.- 3 The Method of Cerf and Palais.- 4 Elliptic 3-manifolds Containing One-sided Klein Bottles.- 5 Lens Spaces

Textul de pe ultima copertă

This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle.
The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background material on diffeomorphism groups is included.

Caracteristici

Includes supplementary material: sn.pub/extras