Differential Equations with Small Parameters and Relaxation Oscillations: Mathematical Concepts and Methods in Science and Engineering, cartea 13
Autor E. Mishchenkoen Limba Engleză Paperback – 27 dec 2012
Din seria Mathematical Concepts and Methods in Science and Engineering
- Preț: 402.38 lei
- 18% Preț: 733.03 lei
- Preț: 395.47 lei
- Preț: 386.39 lei
- Preț: 397.59 lei
- Preț: 400.10 lei
- Preț: 384.31 lei
- Preț: 390.08 lei
- Preț: 382.75 lei
- Preț: 386.39 lei
- 20% Preț: 642.52 lei
- Preț: 398.15 lei
- Preț: 388.90 lei
- Preț: 387.96 lei
- 15% Preț: 653.79 lei
- 20% Preț: 333.72 lei
- 15% Preț: 639.25 lei
- 20% Preț: 336.86 lei
- Preț: 382.75 lei
- 15% Preț: 653.00 lei
- 15% Preț: 604.70 lei
- Preț: 391.02 lei
- 18% Preț: 946.72 lei
- 18% Preț: 956.69 lei
- Preț: 388.90 lei
- 18% Preț: 956.18 lei
- 15% Preț: 644.63 lei
- 18% Preț: 957.32 lei
- 18% Preț: 1233.37 lei
- 18% Preț: 1233.52 lei
- Preț: 392.37 lei
- 18% Preț: 957.94 lei
- 15% Preț: 638.89 lei
- 18% Preț: 950.03 lei
- 15% Preț: 648.74 lei
Preț: 384.48 lei
Nou
Puncte Express: 577
Preț estimativ în valută:
73.59€ • 76.54$ • 61.67£
73.59€ • 76.54$ • 61.67£
Carte tipărită la comandă
Livrare economică 14-28 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461590491
ISBN-10: 1461590493
Pagini: 244
Ilustrații: X, 228 p.
Dimensiuni: 152 x 229 x 13 mm
Greutate: 0.33 kg
Ediția:Softcover reprint of the original 1st ed. 1980
Editura: Springer Us
Colecția Springer
Seria Mathematical Concepts and Methods in Science and Engineering
Locul publicării:New York, NY, United States
ISBN-10: 1461590493
Pagini: 244
Ilustrații: X, 228 p.
Dimensiuni: 152 x 229 x 13 mm
Greutate: 0.33 kg
Ediția:Softcover reprint of the original 1st ed. 1980
Editura: Springer Us
Colecția Springer
Seria Mathematical Concepts and Methods in Science and Engineering
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I. Dependence of Solutions on Small Parameters. Applications of Relaxation Oscillations.- 1. Smooth Dependence. Poincaré’s Theorem.- 2. Dependence of Solutions on a Parameter, on an Infinite Time Interval.- 3. Equations with Small Parameters Multiplying Derivatives.- 4. Second-Order Systems. Fast and Slow Motion. Relaxation Oscillations.- 5. Systems of Arbitrary Order. Fast and Slow Motion. Relaxation Oscillations.- 6. Solutions of the Degenerate Equation System.- 7. Asymptotic Expansions of Solutions with Respect to a Parameter.- 8. A Sketch of the Principal Results.- II. Second-Order Systems. Asymptotic Calculation of Solutions.- 1. Assumptions and Definitions.- 2. The Zeroth Approximation.- 3. Asymptotic Approximations on Slow-Motion Parts of the Trajectory.- 4. Proof of the Asymptotic Representations of the Slow-Motion Part.- 5. Local Coordinates in the Neighborhood of a Junction Point.- 6. Asymptotic Approximations of the Trajectory on the Initial Part of a Junction.- 7. The Relation between Asymptotic Representations and Actual Trajectories in the Initial Junction Section.- 8. Special Variables for the Junction Section.- 9. A Riccati Equation.- 10. Asymptotic Approximations for the Trajectory in the Neighborhood of a Junction Point.- 11. The Relation between Asymptotic Approximations and Actual Trajectories in the Immediate Vicinity of a Junction Point.- 12. Asymptotic Series for the Coefficients of the Expansion Near a Junction Point.- 13. Regularization of Improper Integrals.- 14. Asymptotic Expansions for the End of a Junction Part of a Trajectory.- 15. The Relation between Asymptotic Approximations and Actual Trajectories at the End of a Junction Part.- 16. Proof of Asymptotic Representations for the Junction Part.- 17. Asymptotic Approximations of theTrajectory on the Fast-Motion Part.- 18. Derivation of Asymptotic Representations for the Fast-Motion Part.- 19. Special Variables for the Drop Part.- 20. Asymptotic Approximations of the Drop Part of the Trajectory.- 21. Proof of Asymptotic Representations for the Drop Part of the Trajectory.- 22. Asymptotic Approximations of the Trajectory for Initial Slow-Motion and Drop Parts.- III. Second-Order Systems. Almost-Discontinuous Periodic solutions.- 1. Existence and Uniqueness of an Almost-Discontinuous Periodic Solution.- 2. Asymptotic Approximations for the Trajectory of a Periodic Solution.- 3. Calculation of the Slow-Motion Time.- 4. Calculation of the Junction Time.- 5. Calculation of the Fast-Motion Time.- 6. Calculation of the Drop Time.- 7. An Asymptotic Formula for the Relaxation-Oscillation Period.- 8. Van der Pol’s Equation. Dorodnitsyn’s Formula.- IV. Systems of Arbitrary Order. Asymptotic Calculation of Solutions.- 1. Basic Assumptions.- 2. The Zeroth Approximation.- 3. Local Coordinates in the Neighborhood of a Junction Point.- 4. Asymptotic Approximations of a Trajectory at the Beginning of a Junction Section.- 5. Asymptotic Approximations for the Trajectory in the Neighborhood of a Junction Point.- 6. Asymptotic Approximation of a Trajectory at the End of a Junction Section.- 7. The Displacement Vector.- V. Systems of Arbitrary Order. Almost-Discontinuous Periodic Solutions.- 1. Auxiliary Results.- 2. The Existence of an Almost-Discontinuous Periodic Solution. Asymptotic Calculation of the Trajectory.- 3. An Asymptotic Formula for the Period of Relaxation Oscillations.- References.