Cantitate/Preț
Produs

Differential Games: Theory and Methods for Solving Game Problems with Singular Surfaces

Autor Joseph Lewin
en Limba Engleză Paperback – 23 noi 2011
Differential games theory is the most appropriate discipline for the modelling and analysis of real life conflict problems.
The theory of differential games is here treated with an emphasis on the construction of solutions to actual problems with singular surfaces. The reader is provided with the knowledge necessary to put the theory of differential games into practice.
Citește tot Restrânge

Preț: 71191 lei

Preț vechi: 86818 lei
-18% Nou

Puncte Express: 1068

Preț estimativ în valută:
13624 14152$ 11317£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781447120674
ISBN-10: 1447120671
Pagini: 268
Ilustrații: XX, 242 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.42 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: SPRINGER LONDON
Colecția Springer
Locul publicării:London, United Kingdom

Public țintă

Research

Cuprins

1 A Preview Example.- 1.1 Introduction.- 1.2 A Simple Differential Game.- 1.3 Preliminary Analysis.- 1.4 A Heuristic Solution.- 1.5 Problems.- 2 The Vocabulary For Differential Games.- 2.1 Introduction.- 2.2 The State Vector and the Game-Set.- 2.3 The Equations of Motion.- 2.4 Termigation of a Differential Game.- 2.5 Plays.- 2.6 Outcomes.- 2.7 Strategies.- 2.8 Problems.- 3 The Solution Concept.- 3.1 Introduction.- 3.2 The Solution Quintet.- 3.3 The Extended Solution Concept.- 3.4 Problems.- 4 Semipermeability of Surfaces.- 4.1 Introduction.- 4.2 Smooth Semipermeable Surfaces.- 4.3 Semipermeability of Composite Surfaces.- 4.4 Problems.- 5 Necessary Conditions.- 5.1 Introduction.- 5.2 Properties of the Target Set.- 5.3 Semipermeability of the Boundary of the Escape Set F.- 5.4 Properties of Optimal Trajectories.- 5.5 The Isaacs Equations.- 5.6 The Adjoint Equations.- 5.7 Problems.- 6 Sufficient Conditions.- 6.1 Introduction.- 6.2 The Sufficiency Theorem.- 6.3 Validity of Partial Solutions.- 6.4 Estimatioms of the Value Function.- 6.5 Problems.- 7 Regular Construction.- 7.1 Introduction.- 7.2 The Regular Procedure.- 7.3 Examples.- 7.4 Linear Quadratic Games.- 7.5 Problems.- 8 Construction of SPS.- 8.1 Introduction.- 8.2 Construction of Semipermeable Surfaces.- 8.3 Examples.- 8.4 Problems.- 9 A Topography of the Value Map.- 9.1 Introduction.- 9.2 Barriers and Safe Contact.- 9.3 Switch Surfaces.- 9.4 Dispersal Surfaces.- 9.5 Universal and Focal Surfaces.- 9.6 Corner Surfaces.- 10 Necessary Conditions (Singular).- 10.1 Introduction.- 10.2 The Projection Lemma.- 10.3 Open Barriers.- 10.4 Isaacs Equations for Singular Arcs.- 10.5 Junctions to Singular Arcs.- 10.6 Adjoint Equations for Singular Arcs.- 10.7 Properties of Regular Switch Surfaces.- 10.8 The Chatter Equivalent of Singular Arcs.- 10.9 Sufficient conditions.- 10.l0 Problems.- 11 Dispersal Surfaces.- 11.1 introduction.- 11.2 Region of Multiple Choices.- 11.3 Characterization of Dispersal Surfaces.- 11.4 Examples.- 11.5 Problems.- 12 Singular Arcs of Safe Contact.- 12.1 Introduction.- 12.2 Characterization of Safe Contact.- 12.3 Construction of Safe Contact Arcs.- 12.4 Examples.- 12.5 Problems.- 13 Universal and Focal Surfaces.- 13.1 Introduction.- 13.2 Characterization of Universal Surfaces.- 13.3 Examples.- 13.4 Characterization of Focal Surfaces.- 13.5 Construction of Focal Surfaces.- 13.6 An Example of a Focal Surface.- 13.7 Problems.- 14 Corner Surfaces.- 14.1 Introduction.- 14.2 Characterization of Corner Surfaces.- 14.3 The Switch Envelope.- 14.4 Chatter Equivalent of SE.- 14.5 The Equivocal Surface.- 14.6 Chatter Equivalent of ES.- 14.7 Problems.- 15 The Envelope Barrier.- 15.1 Introduction.- 15.2 The Envelope Barrier.- 15.3 Examples.