Differential Games: Theory and Methods for Solving Game Problems with Singular Surfaces
Autor Joseph Lewinen Limba Engleză Paperback – 23 noi 2011
The theory of differential games is here treated with an emphasis on the construction of solutions to actual problems with singular surfaces. The reader is provided with the knowledge necessary to put the theory of differential games into practice.
Preț: 711.91 lei
Preț vechi: 868.18 lei
-18% Nou
Puncte Express: 1068
Preț estimativ în valută:
136.24€ • 141.52$ • 113.17£
136.24€ • 141.52$ • 113.17£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781447120674
ISBN-10: 1447120671
Pagini: 268
Ilustrații: XX, 242 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.42 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: SPRINGER LONDON
Colecția Springer
Locul publicării:London, United Kingdom
ISBN-10: 1447120671
Pagini: 268
Ilustrații: XX, 242 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.42 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: SPRINGER LONDON
Colecția Springer
Locul publicării:London, United Kingdom
Public țintă
ResearchCuprins
1 A Preview Example.- 1.1 Introduction.- 1.2 A Simple Differential Game.- 1.3 Preliminary Analysis.- 1.4 A Heuristic Solution.- 1.5 Problems.- 2 The Vocabulary For Differential Games.- 2.1 Introduction.- 2.2 The State Vector and the Game-Set.- 2.3 The Equations of Motion.- 2.4 Termigation of a Differential Game.- 2.5 Plays.- 2.6 Outcomes.- 2.7 Strategies.- 2.8 Problems.- 3 The Solution Concept.- 3.1 Introduction.- 3.2 The Solution Quintet.- 3.3 The Extended Solution Concept.- 3.4 Problems.- 4 Semipermeability of Surfaces.- 4.1 Introduction.- 4.2 Smooth Semipermeable Surfaces.- 4.3 Semipermeability of Composite Surfaces.- 4.4 Problems.- 5 Necessary Conditions.- 5.1 Introduction.- 5.2 Properties of the Target Set.- 5.3 Semipermeability of the Boundary of the Escape Set F.- 5.4 Properties of Optimal Trajectories.- 5.5 The Isaacs Equations.- 5.6 The Adjoint Equations.- 5.7 Problems.- 6 Sufficient Conditions.- 6.1 Introduction.- 6.2 The Sufficiency Theorem.- 6.3 Validity of Partial Solutions.- 6.4 Estimatioms of the Value Function.- 6.5 Problems.- 7 Regular Construction.- 7.1 Introduction.- 7.2 The Regular Procedure.- 7.3 Examples.- 7.4 Linear Quadratic Games.- 7.5 Problems.- 8 Construction of SPS.- 8.1 Introduction.- 8.2 Construction of Semipermeable Surfaces.- 8.3 Examples.- 8.4 Problems.- 9 A Topography of the Value Map.- 9.1 Introduction.- 9.2 Barriers and Safe Contact.- 9.3 Switch Surfaces.- 9.4 Dispersal Surfaces.- 9.5 Universal and Focal Surfaces.- 9.6 Corner Surfaces.- 10 Necessary Conditions (Singular).- 10.1 Introduction.- 10.2 The Projection Lemma.- 10.3 Open Barriers.- 10.4 Isaacs Equations for Singular Arcs.- 10.5 Junctions to Singular Arcs.- 10.6 Adjoint Equations for Singular Arcs.- 10.7 Properties of Regular Switch Surfaces.- 10.8 The Chatter Equivalent of Singular Arcs.- 10.9 Sufficient conditions.- 10.l0 Problems.- 11 Dispersal Surfaces.- 11.1 introduction.- 11.2 Region of Multiple Choices.- 11.3 Characterization of Dispersal Surfaces.- 11.4 Examples.- 11.5 Problems.- 12 Singular Arcs of Safe Contact.- 12.1 Introduction.- 12.2 Characterization of Safe Contact.- 12.3 Construction of Safe Contact Arcs.- 12.4 Examples.- 12.5 Problems.- 13 Universal and Focal Surfaces.- 13.1 Introduction.- 13.2 Characterization of Universal Surfaces.- 13.3 Examples.- 13.4 Characterization of Focal Surfaces.- 13.5 Construction of Focal Surfaces.- 13.6 An Example of a Focal Surface.- 13.7 Problems.- 14 Corner Surfaces.- 14.1 Introduction.- 14.2 Characterization of Corner Surfaces.- 14.3 The Switch Envelope.- 14.4 Chatter Equivalent of SE.- 14.5 The Equivocal Surface.- 14.6 Chatter Equivalent of ES.- 14.7 Problems.- 15 The Envelope Barrier.- 15.1 Introduction.- 15.2 The Envelope Barrier.- 15.3 Examples.