Cantitate/Preț
Produs

Differential Geometrical Methods in Mathematical Physics II: Proceedings, University of Bonn, July 13 - 16, 1977: Lecture Notes in Mathematics, cartea 676

Editat de K. Bleuler, H. R. Petry, A. Reetz
en Limba Engleză Paperback – sep 1978

Din seria Lecture Notes in Mathematics

Preț: 42693 lei

Nou

Puncte Express: 640

Preț estimativ în valută:
8173 8406$ 6780£

Carte tipărită la comandă

Livrare economică 17 februarie-03 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540089353
ISBN-10: 3540089357
Pagini: 644
Ilustrații: VI, 626 p.
Dimensiuni: 155 x 235 x 34 mm
Greutate: 0.88 kg
Ediția:1978
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

On the role of field theories in our physical conception of geometry.- Characteristic classes and solutions of gauge theories.- Classification of classical yang-mills fields.- Bundle representations and their applications.- to gauge theory.- The use of exterior forms in field theory.- Electromagnetic fields on manifolds: Betti numbers, monopoles and strings, minimal coupling.- Gravity is the gauge theory of the parallel — transport modification of the poincare group.- On the lifting of structure groups.- On the non-uniqueness of spin structure in superconductivity.- Conformal invariance in field theory.- Geometric quantization and the WKB approximation.- Some properties of half-forms.- On some approach to geometric quantization.- Representations associated to minimal co-adjoint orrits.- On the Schrödinger equation given by geometric quantisation.- Application of geometric quantization in quantum mechanics.- Thermodynamique et Geometrie.- Some preliminary remarks on the formal variational calculus of gel'fand and dikii.- Reducibility of the symplectic structure of minimal interactions.- Ambiguities in canonical transformations of classical systems and the spectra of quantum observables.- Quantum field theory in curved space-times a general mathematical framework.- On functional integrals in curved spacetime.- Observables for quantum fields on curved background.- Quantization of fields on a curved background.- Supergravity.- Representations of classical lie superalgebras.