Dimensionality Reduction with Unsupervised Nearest Neighbors: Intelligent Systems Reference Library, cartea 51
Autor Oliver Krameren Limba Engleză Paperback – 30 apr 2017
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 622.55 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 30 apr 2017 | 622.55 lei 6-8 săpt. | |
Hardback (1) | 626.08 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 11 iun 2013 | 626.08 lei 6-8 săpt. |
Din seria Intelligent Systems Reference Library
- 20% Preț: 1050.57 lei
- 20% Preț: 1138.06 lei
- 20% Preț: 637.52 lei
- 20% Preț: 639.14 lei
- 20% Preț: 988.67 lei
- 20% Preț: 1034.90 lei
- 20% Preț: 1151.69 lei
- 20% Preț: 1145.17 lei
- 20% Preț: 815.83 lei
- 20% Preț: 973.27 lei
- 20% Preț: 1045.44 lei
- 20% Preț: 504.37 lei
- 20% Preț: 1887.55 lei
- 20% Preț: 973.91 lei
- 20% Preț: 640.59 lei
- 20% Preț: 635.09 lei
- 20% Preț: 649.03 lei
- 20% Preț: 636.24 lei
- 20% Preț: 643.03 lei
- 20% Preț: 638.98 lei
- 20% Preț: 637.19 lei
- 20% Preț: 646.92 lei
- 20% Preț: 645.77 lei
- 20% Preț: 1596.59 lei
- 20% Preț: 632.15 lei
- 20% Preț: 638.67 lei
- 20% Preț: 640.27 lei
- 20% Preț: 642.05 lei
- 20% Preț: 986.07 lei
- 20% Preț: 634.26 lei
- 20% Preț: 647.24 lei
- 20% Preț: 634.12 lei
- 20% Preț: 635.73 lei
- 20% Preț: 643.21 lei
Preț: 622.55 lei
Preț vechi: 732.41 lei
-15% Nou
Puncte Express: 934
Preț estimativ în valută:
119.20€ • 124.12$ • 98.90£
119.20€ • 124.12$ • 98.90£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783662518953
ISBN-10: 3662518953
Pagini: 132
Ilustrații: XII, 132 p. 48 illus., 45 illus. in color.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.22 kg
Ediția:Softcover reprint of the original 1st ed. 2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Intelligent Systems Reference Library
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3662518953
Pagini: 132
Ilustrații: XII, 132 p. 48 illus., 45 illus. in color.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.22 kg
Ediția:Softcover reprint of the original 1st ed. 2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Intelligent Systems Reference Library
Locul publicării:Berlin, Heidelberg, Germany
Cuprins
Part I Foundations.-
Part II Unsupervised Nearest Neighbors.-
Part III Conclusions.
Part II Unsupervised Nearest Neighbors.-
Part III Conclusions.
Recenzii
From the reviews:
“The book provides an overview of the author’s work on dimensionality reduction using unsupervised nearest neighbors. … this book is primarily of interest to scholars who want to learn more about Prof. Kramer’s research on dimensionality reduction.” (Laurens van der Maaten, zbMATH, Vol. 1283, 2014)
“The book provides an overview of the author’s work on dimensionality reduction using unsupervised nearest neighbors. … this book is primarily of interest to scholars who want to learn more about Prof. Kramer’s research on dimensionality reduction.” (Laurens van der Maaten, zbMATH, Vol. 1283, 2014)
Textul de pe ultima copertă
This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsupervised nearest neighbors (UNN) is introduced as efficient iterative method for dimensionality reduction. Various UNN models are developed step by step, reaching from a simple iterative strategy for discrete latent spaces to a stochastic kernel-based algorithm for learning submanifolds with independent parameterizations. Extensions that allow the embedding of incomplete and noisy patterns are introduced. Various optimization approaches are compared, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustrate the introduced concepts and to highlight the experimental results.
Caracteristici
Presents recent research in the Hybridization of Metaheuristics for Optimization Problems State-of-the-Art book Written from a leading expert in this field