Cantitate/Preț
Produs

Dirichlet Forms: Lectures given at the 1st Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Varenna, Italy, June 8-19, 1992: Lecture Notes in Mathematics, cartea 1563

Autor E. Fabes Editat de Gianfausto Dell'Antonio Autor M. Fukushima Editat de Umberto Mosco Autor L. Gross, C. Kenig, M. Röckner, D.W. Stroock
en Limba Engleză Paperback – 20 dec 1993
The theory of Dirichlet forms has witnessed recently somevery important developments both in theoretical foundationsand in applications (stochasticprocesses, quantum fieldtheory, composite materials,...). It was therefore felttimely to have on this subject a CIME school, in whichleading experts in the field would present both the basicfoundations of the theory and some of the recentapplications. The six courses covered the basic theory andapplications to:- Stochastic processes and potential theory (M. Fukushimaand M. Roeckner)- Regularity problems for solutions to elliptic equations ingeneral domains (E. Fabes and C. Kenig)- Hypercontractivity of semigroups, logarithmic Sobolevinequalities and relation to statistical mechanics (L. Grossand D. Stroock).The School had a constant and active participation of youngresearchers, both from Italy and abroad.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 31705 lei

Nou

Puncte Express: 476

Preț estimativ în valută:
6067 6381$ 5054£

Carte tipărită la comandă

Livrare economică 03-17 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540574217
ISBN-10: 3540574212
Pagini: 260
Ilustrații: VIII, 252 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Mathematics, C.I.M.E. Foundation Subseries

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Gaussian upper bounds on fundamental solutions of parabolic equations; the method of nash.- Two topics related to Dirichlet forms: quasi everywhere convergences and additive functionals.- Logarithmic Sobolev inequalities and contractivity properties of semigroups.- Potential theory of non-divergence form elliptic equations.- General theory of Dirichlet forms and applications.- Logarithmic Sobolev inequalities for gibbs states.