Distribution Theory: Convolution, Fourier Transform, and Laplace Transform: de Gruyter Textbook
Autor Gerrit Dijken Limba Engleză Paperback – 14 mar 2013
It is suitable for a one-semester course at the advanced undergraduate or beginning graduatelevelor for self-study.
Din seria de Gruyter Textbook
- 8% Preț: 488.31 lei
- 20% Preț: 267.31 lei
- 8% Preț: 425.21 lei
- Preț: 351.51 lei
- Preț: 399.46 lei
- Preț: 160.63 lei
- Preț: 306.20 lei
- Preț: 235.55 lei
- 8% Preț: 481.99 lei
- Preț: 254.71 lei
- Preț: 229.40 lei
- Preț: 346.02 lei
- Preț: 243.25 lei
- 8% Preț: 439.50 lei
- Preț: 200.61 lei
- 20% Preț: 333.29 lei
- Preț: 269.66 lei
- Preț: 309.50 lei
- 8% Preț: 476.42 lei
- 8% Preț: 482.25 lei
- 8% Preț: 487.34 lei
- 9% Preț: 746.29 lei
- 8% Preț: 421.37 lei
- 9% Preț: 618.56 lei
- Preț: 388.48 lei
- 8% Preț: 379.82 lei
- Preț: 289.45 lei
- 8% Preț: 507.93 lei
- 8% Preț: 482.25 lei
- 8% Preț: 582.02 lei
- Preț: 277.37 lei
- 8% Preț: 481.86 lei
- 8% Preț: 493.55 lei
- 20% Preț: 337.98 lei
- Preț: 304.40 lei
- 8% Preț: 412.66 lei
- Preț: 282.85 lei
- 8% Preț: 491.57 lei
- 8% Preț: 582.99 lei
- Preț: 334.13 lei
- Preț: 289.03 lei
- 8% Preț: 498.82 lei
- 8% Preț: 573.88 lei
- 8% Preț: 495.15 lei
- Preț: 394.63 lei
- Preț: 205.71 lei
- 8% Preț: 464.59 lei
Preț: 169.93 lei
Nou
32.52€ • 33.91$ • 27.03£
Carte tipărită la comandă
Livrare economică 17-24 martie
Specificații
ISBN-10: 3110295911
Pagini: 117
Ilustrații: 1 schw.-w. Abb.
Dimensiuni: 170 x 240 x 10 mm
Greutate: 0.4 kg
Editura: De Gruyter
Colecția De Gruyter
Seria de Gruyter Textbook
Locul publicării:Berlin/Boston
Notă biografică
Gerrit van Dijk, Leiden University, The Netherlands.
Cuprins
Preface 2
1 Definition and first properties of distributions 7
1.1 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Support of a distribution . . . . . . . . . . . . . . . . . . . . . 10
2 Differentiating distributions 13
2.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 13
2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 The distributions x-1+ ( 6= 0,-1,-2, . . . )* . . . . . . . . . . 16
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Green's formula and harmonic functions . . . . . . . . . . . . 19
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Multiplication and convergence of distributions 27
3.1 Multiplication with a C1 function . . . . . . . . . . . . . . . 27
3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Convergence in D0 . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Distributions with compact support 31
4.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 31
4.2 Distributions supported at the origin . . . . . . . . . . . . . . 32
4.3 Taylor's formula for Rn . . . . . . . . . . . . . . . . . . . . . 33
4.4 Structure of a distribution* . . . . . . . . . . . . . . . . . . . 34
5 Convolution of distributions 36
5.1 Tensor product of distributions . . . . . . . . . . . . . . . . . 36
5.2 Convolution product of distributions . . . . . . . . . . . . . . 38
5.3 Associativity of the convolution product . . . . . . . . . . . . 44
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Newton potentials and harmonic functions . . . . . . . . . . . 45
5.6 Convolution equations . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Symbolic calculus of Heaviside . . . . . . . . . . . . . . . . . 50
5.8 Volterra integral equations of the second kind . . . . . . . . . 52
5.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.10 Systems of convolution equations* . . . . . . . . . . . . . . . 55
5.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6 The Fourier transform 57
6.1 Fourier transform of a function on R . . . . . . . . . . . . . . 57
6.2 The inversion theorem . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Plancherel's theorem . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Differentiability properties . . . . . . . . . . . . . . . . . . . . 62
6.5 The Schwartz space S(R) . . . . . . . . . . . . . . . . . . . . 63
6.6 The space of tempered distributions S0(R) . . . . . . . . . . . 65
6.7 Structure of a tempered distribution* . . . . . . . . . . . . . 66
6.8 Fourier transform of a tempered distribution . . . . . . . . . 67
6.9 Paley Wiener theorems on R* . . . . . . . . . . . . . . . . . . 69
6.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.11 Fourier transform in Rn . . . . . . . . . . . . . . . . . . . . . 73
6.12 The heat or diffusion equation in one dimension . . . . . . . . 75
7 The Laplace transform 79
7.1 Laplace transform of a function . . . . . . . . . . . . . . . . . 79
7.2 Laplace transform of a distribution . . . . . . . . . . . . . . . 80
7.3 Laplace transform and convolution . . . . . . . . . . . . . . . 81
7.4 Inversion formula for the Laplace transform . . . . . . . . . . 84
8 Summable distributions* 87
8.1 Definition and main properties . . . . . . . . . . . . . . . . . 87
8.2 The iterated Poisson equation . . . . . . . . . . . . . . . . . . 88
8.3 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . 89
8.4 Canonical extension of a summable distribution . . . . . . . . 91
8.5 Rank of a distribution . . . . . . . . . . . . . . . . . . . . . . 93
9 Appendix 96
9.1 The Banach-Steinhaus theorem . . . . . . . . . . . . . . . . . 96
9.2 The beta and gamma function . . . . . . . . . . . . . . . . . 103
Bibliography 108
Index 109