Dynamics of Elastic Containers: Partially Filled with Liquid: Applied Physics and Engineering, cartea 5
Autor I. M. Rapoport Traducere de H. N. Abramsonen Limba Engleză Paperback – mar 2012
Preț: 626.03 lei
Preț vechi: 736.50 lei
-15% Nou
Puncte Express: 939
Preț estimativ în valută:
119.82€ • 124.88$ • 99.75£
119.82€ • 124.88$ • 99.75£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642461088
ISBN-10: 3642461085
Pagini: 380
Ilustrații: VIII, 368 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.53 kg
Ediția:Softcover reprint of the original 1st ed. 1968
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Applied Physics and Engineering
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642461085
Pagini: 380
Ilustrații: VIII, 368 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.53 kg
Ediția:Softcover reprint of the original 1st ed. 1968
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Applied Physics and Engineering
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1 Fluid Pressure on the Wetted Surface of the Cavity.- [1] The Velocity Potential.- [2] Pressure in Regions Occupied by the Fluid Masses.- [3] The Force Equation and the Moment Equation.- [4] Moments of Inertia of a Solid Body Containing Fluid Masses.- 2 Equations of Motion of an Elastic Body with Cavities Partially Filled with an Ideal Fluid.- [1] Elastic Displacements $$\vec u\left( {x,{\text{ }}y,{\text{ }}z,{\text{ }}t} \right)$$.- [2] Steady Motion.- [3] Disturbances of Steady Motion.- [4] Disturbances Brought About by Changes in Initial Conditions.- [5] Impulsive Disturbances of Steady Motion.- [6] Integro-Differential Equations of Motion.- [7] Reducing Several Boundary-Value Problems to One, Principal Boundary-Value Problem.- 3 The Basic Boundary-value Problem.- [1] The Homogeneous Boundary-Value Problem.- [2] The Nonhomogeneous Boundary-Value Problem.- [3] Variational Statement of the problem.- [4] Asymptotic Expansion of the Basic Functional.- [5] Refining the Basic Equations of the Strength of Materials.- [6] Approximate Solution of the Basic Boundary-Value Problem.- 4 Vibrations of an Elastic Body Containing Fluid Masses.- [1] Natural Vibrations of an Elastic Body Containing Fluid Masses.- [2] Stability of the Steady Motion.- [3] Uniqueness of the Solution of Cauchy’s Problem for the Elastic Displacements $$\vec u\left( {x,{\text{ }}y,{\text{ }}z,{\text{ }}t} \right)$$ and the Pressure p(x, y, z, t).- [4] The Conjugate Boundary-Value Problem, Biorthogonal System of Eigenfunctions.- [5] Forced Vibrations of a Fluid-Filled Elastic Body.- [6] Ordinary Differential Equations of Motion.- 5 The Case When the Elastic Body Is Symmetrical with Respect to Two Mutually Perpendicular Planes.- [1] Transformation of The Basic Boundary-Value Problem.- [2] Determinant D(?).- [3] Longitudinal and Flexural Vibrations of an Elastic Body Containing Fluid.- [4] Natural Flexural Vibrations and Their Stability.- References.