Dynamics Reported: Expositions in Dynamical Systems: Dynamics Reported. New Series, cartea 4
Contribuţii de A.M. Blokh, A. Celletti, L. Chierchia, C. Liverani, M.P. Wojtowski, T. Wanneren Limba Engleză Paperback – 18 sep 2011
Preț: 368.09 lei
Nou
Puncte Express: 552
Preț estimativ în valută:
70.44€ • 74.78$ • 58.70£
70.44€ • 74.78$ • 58.70£
Carte tipărită la comandă
Livrare economică 26 decembrie 24 - 09 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642647482
ISBN-10: 3642647480
Pagini: 284
Ilustrații: IX, 269 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Dynamics Reported. New Series
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642647480
Pagini: 284
Ilustrații: IX, 269 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Dynamics Reported. New Series
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
The "Spectral" Decomposition for One–Dimensional Maps.- 1. Introduction and Main Results.- 2. Technical Lemmas.- 3. Solenoidal Sets.- 4. Basic Sets.- 5. The Decomposition.- 6. Limit Behavior for Maps Without Wandering Intervals.- 7. Topological Properties of the Sets Per f, ?(f) and ?(f).- 8. Transitive and Mixing Maps.- 9. Corollaries Concerning Periods of Cycles.- 10. Invariant Measures.- 11. Discussion of Some Recent Results of Block and Coven and Xiong Jincheng.- References.- A Constructive Theory of Lagrangian Tori and Computer-assisted Applications.- 1. Introduction.- 2. Quasi-Periodic Solutions and Invariant Tori for Lagrangian Systems: Algebraic Structure.- 3. Quasi-Periodic Solutions and Invariant Tori for Lagrangian Systems: Quantitative Analysis.- 4. KAM Algorithm.- 5. A KAM Theorem.- 6. Application of the KAM Algorithm to Problems with Parameters.- 7. Power Series Expansions and Estimate of the Error Term.- 8. Computer Assisted Methods.- 9. Applications: Three-Dimensional Phase Space Systems.- 10. Applications: Symplectic Maps.- Appendices.- References.- Ergodicity in Hamiltonian Systems.- 0. Introduction.- 1. A Model Problem.- 2. The Sinai Method.- 3. Proof of the Sinai Theorem.- 4. Sectors in a Linear Symplectic Space.- 5. The Space of Lagrangian Subspaces Contained in a Sector.- 6. Unbounded Sequences of Linear Monotone Maps.- 7. Properties of the System and the Formulation of the Results.- 8. Construction of the Neighborhood and the Coordinate System.- 9. Unstable Manifolds in the Neghborhood U.- 10. Local Ergodicity in the Smooth Case.- 11. Local Ergodicity in the Discontinous Case.- 12. Proof of Sinai Theorem.- 13. ‘Tail Bound’.- 14. Applications.- References.- Linearization of Random Dynamical Systems.- 1. Introduction.- 2. Random DifferenceEquations.- 3. Random Dynamical Systems.- 4. Local Results.- 5. Appendix.- References.