Cantitate/Preț
Produs

Einführung in die lineare Algebra

Autor Rolf Walter
de Limba Germană Paperback – 1996

Preț: 43614 lei

Preț vechi: 50131 lei
-13% Nou

Puncte Express: 654

Preț estimativ în valută:
8347 8805$ 6976£

Carte tipărită la comandă

Livrare economică 27 decembrie 24 - 02 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783528384883
ISBN-10: 3528384883
Pagini: 296
Ilustrații: X, 280 S. Mit 42 Abb. und 100 Beisp.
Dimensiuni: 162 x 229 x 16 mm
Ediția:4Aufl. 1996
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Locul publicării:Wiesbaden, Germany

Public țintă

Research

Cuprins

0 Orientierung.- 0.1 Das Lösen linearer Gleichungssysteme, Gaußsches Verfahren.- 0.2 Standardveranschaulichung.- 0.3 Metrische Standardgrößen.- 1 Einige Grundstrukturen der Algebra.- 1.1 Der Gruppenbegriff.- 1.2 Der Körperbegriff.- 1.3 Der Körper der komplexen Zahlen.- 1.4 Polynome.- 1.5 Einige weitere algebraische Strukturen.- 2 Vektorräume.- 2.1 Der Vektorraumbegriff.- 2.2 Lineare Abhängigkeit.- 2.3 Dimension und Basis.- 2.4 Untervektorräume.- 2.5 Erzeugung endlich dimensionaler Untervektorräume, Matrizen.- 2.6 Affine Struktur eines Vektorraumes.- 3 Lineare Abbildungen.- 3.1 Definition und grundlegende Eigenschaften.- 3.2 Anwendung auf lineare Gleichungssysteme.- 3.3 Operationen für lineare Abbildungen.- 3.4 Koordinaten-und Matrizenrechnung.- 3.5 Basis-und Koordinatentransformation.- 3.6 Darstellung von Unterräumen.- 4 Determinanten.- 4.1 Motivierung.- 4.2 Determinantenformen.- 4.3 Zahldeterminanten.- 4.4 Anwendungen.- 4.5 Determinanten von linearen Abbildungen und von Bilinearformen.- 4.6 Orientierung reeller Vektorräume.- 5 Reelle Räume mit Skalarprodukt.- 5.1 Skalarprodukte.- 5.2 Der endlich dimensionale Fall.- 5.3 Euklidische Vektorräume.- 5.4 Orthogonalsysteme.- 5.5 Determinantenformen in euklidischen Vektorräumen.- 5.6 Zwei-und dreidimensionale euklidische Vektorräume.- 5.7 Isometrien.- 6 Eigenwerte und Jordansche Normalform.- 6.1 Eigenelemente.- 6.2 Die charakteristische Gleichung.- 6.3 Der euklidische Fall.- 6.4 Verallgemeinerte Eigenräume und erster Zerlegungssatz.- 6.5 Nilpotente Operatoren und zweiter Zerlegungssatz.- 6.6 Konstruktion der Jordanschen Normalform.- 6.7 Eindeutigkeit der Jordanschen Normalform.- 6.8 Durchrechnung eines Beispiels.- Anhang über Logik und Mengenlehre.- Logisches Schließen.- Mengen.- Abbildungen.- Relationen.-Natürliche Zahlen und vollständige Induktion.- Literaturhinweise.- Wichtige Symbole aus Kapitel 0 bis 6.