Einführung in Optimierungsmodelle: Mit Beispielen und Real-World-Anwendungen in Python
Autor Nathan Sudermann-Merxde Limba Germană Paperback – 3 noi 2023
Ein lineares gemischt-ganzzahliges Optimierungsproblem kann heute etwa 500 Milliarden Mal schneller gelöst werden als zu Beginn der 90er Jahre und lässt sich in leicht zu erlernenden Programmiersprachen wie Python formulieren. Da Sie Optimierungsalgorithmen für Real-World-Anwendungen in der Regel nicht selbst schreiben werden, lassen wir diesen Aspekt außen vor und wenden uns stattdessen der wunderschönen Welt der Modellierung zu. Sie lernen, echte Anwendungen in der Sprache der Mathematik zu beschreiben und implementieren alle vorgestellten Modelle in Python, um sie anschließend von bereits existierenden Solvern lösen lassen. Dieses anwendungsnahe Vorgehen soll Sie befähigen, selbst Optimierungsprobleme in der Praxis zu lösen.
Preț: 185.16 lei
Nou
Puncte Express: 278
Preț estimativ în valută:
35.45€ • 36.92$ • 29.41£
35.45€ • 36.92$ • 29.41£
Carte tipărită la comandă
Livrare economică 10-15 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783662673805
ISBN-10: 3662673800
Ilustrații: XVI, 206 S. 147 Abb. in Farbe. Mit Online-Extras.
Dimensiuni: 155 x 235 mm
Ediția:1. Aufl. 2023
Editura: Springer Berlin, Heidelberg
Colecția Springer Spektrum
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3662673800
Ilustrații: XVI, 206 S. 147 Abb. in Farbe. Mit Online-Extras.
Dimensiuni: 155 x 235 mm
Ediția:1. Aufl. 2023
Editura: Springer Berlin, Heidelberg
Colecția Springer Spektrum
Locul publicării:Berlin, Heidelberg, Germany
Cuprins
1 Einführung.- 2 Mathematische Grundlagen und Konvexität.- 3 Unrestringierte quadratische Optimierungsmodelle.- 4 Lineare Optimierungsmodelle.- 5 Gemischt-ganzzahlige lineare Optimierungsmodelle.- 6 Gemischt-ganzzahlige quadratische Optimierungsmodelle.- 7 Fortgeschrittene Modellierungstechniken.- 8 Optimierungsmodelle in der Praxis.
Notă biografică
Prof. Dr. Nathan Sudermann-Merx ist Professor an der Dualen Hochschule Baden-Württemberg Mannheim und leitet dort den Studiengang "Informatik mit Ausrichtung Machine Learning". In Forschung und Lehre beschäftigt er sich mit mathematischen Modellen im Bereich der Optimierung und des Machine Learnings. Zuvor war er in global agierenden Unternehmen als Experte für Mathematische Optimierung tätig und ist parallel zu seinen akademischen Tätigkeiten weiterhin in Industrieprojekten aktiv.
Textul de pe ultima copertă
Dieses Buch könnte interessant für Sie sein, falls Sie über eine solide mathematische Ausbildung verfügen und nun Anwendungsprobleme mit Hilfe von Optimierungsmodellen lösen möchten, ohne sich zuvor jahrelang mit der zugehörigen Theorie zu beschäftigen.
Ein lineares gemischt-ganzzahliges Optimierungsproblem kann heute etwa 500 Milliarden Mal schneller gelöst werden als zu Beginn der 90er Jahre und lässt sich in leicht zu erlernenden Programmiersprachen wie Python formulieren. Da Sie Optimierungsalgorithmen für Real-World-Anwendungen in der Regel nicht selbst schreiben werden, lassen wir diesen Aspekt außen vor und wenden uns stattdessen der wunderschönen Welt der Modellierung zu. Sie lernen, echte Anwendungen in der Sprache der Mathematik zu beschreiben und implementieren alle vorgestellten Modelle in Python, um sie anschließend von bereits existierenden Solvern lösen lassen. Dieses anwendungsnahe Vorgehen soll Sie befähigen, selbst Optimierungsprobleme in der Praxis zu lösen.
Der Autor
Prof. Dr. Nathan Sudermann-Merx ist Professor an der Dualen Hochschule Baden-Württemberg Mannheim und leitet dort den Studiengang "Informatik mit Ausrichtung Machine Learning". In Forschung und Lehre beschäftigt er sich mit mathematischen Modellen im Bereich der Optimierung und des Machine Learnings. Zuvor war er in global agierenden Unternehmen als Experte für Mathematische Optimierung tätig und ist parallel zu seinen akademischen Tätigkeiten weiterhin in Industrieprojekten aktiv.
Ein lineares gemischt-ganzzahliges Optimierungsproblem kann heute etwa 500 Milliarden Mal schneller gelöst werden als zu Beginn der 90er Jahre und lässt sich in leicht zu erlernenden Programmiersprachen wie Python formulieren. Da Sie Optimierungsalgorithmen für Real-World-Anwendungen in der Regel nicht selbst schreiben werden, lassen wir diesen Aspekt außen vor und wenden uns stattdessen der wunderschönen Welt der Modellierung zu. Sie lernen, echte Anwendungen in der Sprache der Mathematik zu beschreiben und implementieren alle vorgestellten Modelle in Python, um sie anschließend von bereits existierenden Solvern lösen lassen. Dieses anwendungsnahe Vorgehen soll Sie befähigen, selbst Optimierungsprobleme in der Praxis zu lösen.
Der Autor
Prof. Dr. Nathan Sudermann-Merx ist Professor an der Dualen Hochschule Baden-Württemberg Mannheim und leitet dort den Studiengang "Informatik mit Ausrichtung Machine Learning". In Forschung und Lehre beschäftigt er sich mit mathematischen Modellen im Bereich der Optimierung und des Machine Learnings. Zuvor war er in global agierenden Unternehmen als Experte für Mathematische Optimierung tätig und ist parallel zu seinen akademischen Tätigkeiten weiterhin in Industrieprojekten aktiv.
Caracteristici
Geeignet für Hochschulen und Industrie - insbesondere für Data Scientists Modelle und praxisrelevante Anwendungen statt trockener Theorie Python-Code online verfügbar: https://shorturl.at/opuQ8