Cantitate/Preț
Produs

Electromagnetic and Optical Pulse Propagation 2: Temporal Pulse Dynamics in Dispersive, Attenuative Media: Springer Series in Optical Sciences, cartea 144

Autor Kurt E. Oughstun
en Limba Engleză Paperback – 23 aug 2016
Electromagnetic & Optical Pulse Propagation presents a detailed, systematic treatment of the time-domain electromagnetics with application to the propagation of transient electromagnetic fields (including ultrawideband signals and ultrashort pulses) in homogeneous, isotropic media which exhibit both temporal frequency dispersion and attenuation. The development is mathematically rigorous with strict adherence to the fundamental physical principle of causality. Approximation methods are based upon mathematically well-defined asymptotic techniques that are based upon the saddle point method. A detailed description is given of the asymptotic expansions used. Meaningful exercises are given throughout the text to help the reader‘s understanding of the material, making the book a useful graduate level text in electromagnetic wave theory for both physics, electrical engineering and materials science programs. Both students and researchers alike will obtain a better understanding of time domain electromagnetics as it applies to electromagnetic radiation and wave propagation theory with applications to ground and foliage penetrating radar, medical imaging, communications, and the health and safety issues associated with ultrawideband pulsed fields.
Volume 2 presents a detailed asymptotic description of plane wave pulse propagation in dielectric, conducting, and semiconducting materials as described by the classical Lorentz model of dielectric resonance, the Rocard-Powles-Debys model of orientational polarization, and the Drude model of metals. The rigorous description of the signal velocity of a pulse in a dispersive material is presented in connection with the question of superluminal pulse propagation.
Citește tot Restrânge

Din seria Springer Series in Optical Sciences

Preț: 110812 lei

Preț vechi: 145805 lei
-24% Nou

Puncte Express: 1662

Preț estimativ în valută:
21214 22051$ 17589£

Carte tipărită la comandă

Livrare economică 01-07 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781493950379
ISBN-10: 1493950371
Pagini: 831
Ilustrații: XV, 831 p.
Dimensiuni: 155 x 235 mm
Ediția:Softcover reprint of the original 1st ed. 2009
Editura: Springer
Colecția Springer
Seria Springer Series in Optical Sciences

Locul publicării:New York, NY, United States

Cuprins

Pulsed Electromagnetic and Optical Beam WaveFields in Temporally Dispersive Media.- Asymptotic Methods of Analysis using Advanced Saddle Point Techniques.- The Group Velocity Approximation.- Analysis of the Phase Function and Its Saddle Points.- Evolution of the Precursor Fields.- Evolution of the Signal.- Continuous Evolution of the Total Field.- Physical Interpretations of Dispersive Pulse Dynamics.- Applications.

Recenzii

From the reviews:
“This book is the second volume of a two-volume set on Electromagnetic and Optical Pulse Propagation, authored by Prof. Oughstun. It presents a systematic treatment of the radiation and propagation of transient electromagnetic and optical wave fields. … Electromagnetic and Optical Pulse Propagation is a very impressive book. It is highly recommended for graduate students, researchers, physicists, and engineers who are working in the field of electromagnetic wave propagation, antennas, microwaves, photonics, and optoelectronics.” (René Marklein, Radio Science Bulletin, Issue 333, June, 2010)
"These volumes are a veritable tour de force of optics writing. The topic they cover is one of immense importance, and the treatment it is accorded by this single author is both rigorous and comprehensive. The author's dedication in marshalling more than 1,200 pages of material is to be lauded. The work is a graduate-level text, and its contents will meet the requirements of a broad spectrum of scientists and engineers who require access to the methodologies underpinning pulse propagation. Both volumes include exercises that should ensure that the reader can test their understanding of the material presented. One minor difference between the volumes is the use of different paper finish for the production: acid-free matte for volume 1 and glossy for volume 2. No obvious reason accounts for this distinciton. There is the isolated misprint in the books, but overall the quality of production and presentation is very high. Having a mathematical pedigree, this reviewer was particularly drawn to the expositions of asymptotic approximations presented in volume 2, where potentially challenging techniques are carefully derived and illustrated with well-chosen figures. The wise use of dedicated chapters and sections to highlight particular approaches is strongly conducive to learning the chosen techniques. However, these volumes do not present mathematical abstractions of electromagnetic theory. The work is firmly rooted in physical understanding and ultimately directed at real-world applications. It can be confidently expected that those who have the opportunity to benefit from the industry of the books' author will be able to contribute significantly to current and emerging applications of pulse propagation." (K. Alan Shore, OPN Optics & Photonics News, June, 2010)

Notă biografică

Kurt Oughstun is a Professor of Electrical Engineering, Mathematics and Computer Science in the College of Engineering & Mathematics at the University of Vermont where he was University Scholar in the Basic and Applied Sciences. A graduate of The Institute of Optics at the University of Rochester, he is a Fellow of the Optical Society of America, a member of the European Optical Society and a member of the United States National Committee of the International Union of Radio Science. His research centers on electromagnetic and optical wave theory, asymptotic methods of analysis, and computational techniques. He has published extensively on his research in these areas in such journals as the Journal of the Optical Society of America A & B, Journal of the European Optical Society A, Physical Review A & E, Physical Review Letters, IEEE Proceedings, and Radio Science.

Textul de pe ultima copertă

Electromagnetic and Optical Pulse Propagation presents a systematic treatment of the radiation and propagation of transient electromagnetic and optical wave fields (such as those used in ultrawideband radar and communications systems as well as in ultrashort pulsed optics) through causal, locally linear media which exhibit both temporal dispersion and absorption. Volume I presents a detailed, rigorous development of the fundamental theory of both time and frequency-domain electromagnetics, beginning with the classical Maxwell-Lorentz theory of microscopic electromagnetic fields and its invariance in the special theory of relativity, the correlation of the microscopic and macroscopic fields, and the angular spectrum representation of pulsed radiation fields in causally dispersive media. The theory provides a rigorous framework for applied research treating temporally pulsed wave fields in dielectric, conducting and semiconducting materials. Volume II presents the asymptoticdescription of specific pulsed wave fields in both Debye and Lorentz model dielectrics, Drude model conductors and composite model semiconductors.

Caracteristici

Rigorous development of the classical microscopic Maxwell-Lorentz theory Detailed development of the dipole radiation field from the Liénard-Wiechert potentials Correlation of the microscopic and macroscopic electromagnetic fields in linear media Detailed description of causal, physical models describing material dispersion Angular spectrum representation of pulsed radiation fields in linear, temporally dispersive media Examines controversial superluminal pulse propagation question Meaning exercises at the end of each chapter to help readers gain a better understanding fo material Includes supplementary material: sn.pub/extras