Cantitate/Preț
Produs

Electronic Design Automation of Analog ICs combining Gradient Models with Multi-Objective Evolutionary Algorithms: SpringerBriefs in Applied Sciences and Technology

Autor Frederico A.E. Rocha, Ricardo M. F. Martins, Nuno C. C. Lourenço, Nuno C. G. Horta
en Limba Engleză Paperback – 15 oct 2013
This book applies to the scientific area of electronic design automation (EDA) and addresses the automatic sizing of analog integrated circuits (ICs). Particularly, this book presents an approach to enhance a state-of-the-art layout-aware circuit-level optimizer (GENOM-POF), by embedding statistical knowledge from an automatically generated gradient model into the multi-objective multi-constraint optimization kernel based on the NSGA-II algorithm. The results showed allow the designer to explore the different trade-offs of the solution space, both through the achieved device sizes, or the respective layout solutions.
Citește tot Restrânge

Din seria SpringerBriefs in Applied Sciences and Technology

Preț: 37604 lei

Nou

Puncte Express: 564

Preț estimativ în valută:
7197 7450$ 6083£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319021881
ISBN-10: 3319021885
Pagini: 84
Ilustrații: XI, 69 p. 39 illus.
Dimensiuni: 155 x 235 x 4 mm
Greutate: 0.13 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Seriile SpringerBriefs in Applied Sciences and Technology, SpringerBriefs in Computational Intelligence

Locul publicării:Cham, Switzerland

Public țintă

Research

Cuprins

Introduction.- Related Work.- Gradient Model Generation.- Enhanced Circuit-Level Optimization Kernel.- Case Studies.- Conclusions and Outlook.

Textul de pe ultima copertă

This book applies to the scientific area of electronic design automation (EDA) and addresses the automatic sizing of analog integrated circuits (ICs). Particularly, this book presents an approach to enhance a state-of-the-art layout-aware circuit-level optimizer (GENOM-POF), by embedding statistical knowledge from an automatically generated gradient model into the multi-objective multi-constraint optimization kernel based on the NSGA-II algorithm. The results showed allow the designer to explore the different trade-offs of the solution space, both through the achieved device sizes, or the respective layout solutions.

Caracteristici

Includes supplementary material: sn.pub/extras