Elliptic and Modular Functions from Gauss to Dedekind to Hecke
Autor Ranjan Royen Limba Engleză Hardback – 17 apr 2017
Preț: 591.09 lei
Preț vechi: 664.15 lei
-11% Nou
Puncte Express: 887
Preț estimativ în valută:
113.13€ • 116.59$ • 95.51£
113.13€ • 116.59$ • 95.51£
Carte tipărită la comandă
Livrare economică 03-17 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781107159389
ISBN-10: 1107159385
Pagini: 488
Ilustrații: 13 b/w illus.
Dimensiuni: 182 x 261 x 31 mm
Greutate: 1.04 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 1107159385
Pagini: 488
Ilustrații: 13 b/w illus.
Dimensiuni: 182 x 261 x 31 mm
Greutate: 1.04 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
Cuprins
1. The basic modular forms; 2. Gauss's contributions to modular forms; 3. Abel and Jacobi on elliptic functions; 4. Eisenstein and Hurwitz; 5. Hermite's transformation of theta functions; 6. Complex variables and elliptic functions; 7. Hypergeometric functions; 8. Dedekind's paper on modular functions; 9. The n function and Dedekind sums; 10. Modular forms and invariant theory; 11. The modular and multiplier equations; 12. The theory of modular forms as reworked by Hurwitz; 13. Ramanujan's Euler products and modular forms; 14. Dirichlet series and modular forms; 15. Sums of squares; 16. The Hecke operators.
Recenzii
'Finally, it needs to be stressed that Roy does much more than present these mathematical works as museum pieces. He takes pains to tie them in to modern work when reasonable and appropriate, and that of course just adds to the quality of his work. I am very excited to have a copy of this wonderful book in my possession.' Michael Berg, MAA Reviews
'This book will be a valuable resource for understanding modular functions in their historical context, especially for readers not fluent in the languages of the original papers.' Paul M. Jenkins, Mathematical Reviews
'This book will be a valuable resource for understanding modular functions in their historical context, especially for readers not fluent in the languages of the original papers.' Paul M. Jenkins, Mathematical Reviews
Notă biografică
Descriere
A thorough guide to elliptic functions and modular forms that demonstrates the relevance and usefulness of historical sources.