Ergodic Theory and Negative Curvature: CIRM Jean-Morlet Chair, Fall 2013: Lecture Notes in Mathematics, cartea 2164
Editat de Boris Hasselblatten Limba Engleză Paperback – 20 dec 2017
The first chapters introduce hyperbolic dynamics, ergodic theory and geodesic and horocycle flows, and include an English translation of Hadamard's original proof of the Stable-Manifold Theorem. An outline of the strategy, motivation and context behind the ergodicity proof is followed by a careful exposition of it (using the Hopf argument) and of the pertinent context of Teichmüller theory. Finally, some complementary lectures describe the deep connections between geodesic flows in negative curvature and Diophantine approximation.
Din seria Lecture Notes in Mathematics
- 17% Preț: 360.42 lei
- Preț: 117.90 lei
- 20% Preț: 380.29 lei
- Preț: 131.65 lei
- Preț: 446.82 lei
- Preț: 175.68 lei
- Preț: 477.63 lei
- 17% Preț: 361.88 lei
- Preț: 252.37 lei
- Preț: 343.94 lei
- Preț: 138.88 lei
- Preț: 152.60 lei
- Preț: 116.67 lei
- Preț: 102.77 lei
- Preț: 119.02 lei
- 17% Preț: 365.52 lei
- Preț: 396.75 lei
- 17% Preț: 362.12 lei
- Preț: 396.11 lei
- Preț: 357.78 lei
- 17% Preț: 362.31 lei
- Preț: 403.80 lei
- 17% Preț: 361.70 lei
- Preț: 485.61 lei
- Preț: 444.01 lei
- Preț: 395.90 lei
- Preț: 473.67 lei
- Preț: 411.94 lei
- Preț: 473.67 lei
- Preț: 321.16 lei
- Preț: 316.50 lei
- Preț: 340.35 lei
- Preț: 321.90 lei
- Preț: 396.74 lei
- Preț: 318.94 lei
- Preț: 409.29 lei
- Preț: 268.12 lei
- Preț: 412.51 lei
- Preț: 410.03 lei
- Preț: 490.60 lei
- Preț: 410.03 lei
- Preț: 267.00 lei
- Preț: 325.66 lei
- Preț: 410.25 lei
- Preț: 483.29 lei
- Preț: 264.95 lei
- Preț: 415.85 lei
- Preț: 365.51 lei
- Preț: 414.95 lei
- Preț: 316.66 lei
Preț: 486.92 lei
Preț vechi: 572.85 lei
-15% Nou
Puncte Express: 730
Preț estimativ în valută:
93.18€ • 97.72$ • 77.70£
93.18€ • 97.72$ • 77.70£
Carte tipărită la comandă
Livrare economică 07-21 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319430584
ISBN-10: 3319430580
Pagini: 334
Ilustrații: VII, 328 p. 68 illus., 17 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.47 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Cham, Switzerland
ISBN-10: 3319430580
Pagini: 334
Ilustrații: VII, 328 p. 68 illus., 17 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.47 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics
Locul publicării:Cham, Switzerland
Cuprins
Boris Hasselblatt: Preface.- Boris Hasselblatt: Introduction to Hyperbolic Dynamics and Ergodic Theory.- Jacques Hadamard: On iteration and asymptotic solutions of differential equations (translated by Boris Hasselblatt).- Barbara Schapira: Dynamics of Geodesic and Horocyclic Flows.- Keith Burns, Howard Masur, Amie Wilkinson: Ergodicity of the Weil-Petersson Geodesic Flow.- Keith Burns, Howard Masur, Carlos Matheus and Amie Wilkinson: Ergodicity of Geodesic Flows on Incomplete Negatively Curved Manifolds.-Carlos Matheus: The Dynamics of the Weil-Petersson flow.- Jouni Parkkonen, Frédéric Paulin: A survey of some Arithmetic Applications of Ergodic Theory in Negative Curvature.
Textul de pe ultima copertă
Focussing on the mathematics related to the recent proof of ergodicity of the (Weil–Petersson) geodesic flow on a nonpositively curved space whose points are negatively curved metrics on surfaces, this book provides a broad introduction to an important current area of research. It offers original textbook-level material suitable for introductory or advanced courses as well as deep insights into the state of the art of the field, making it useful as a reference and for self-study.
The first chapters introduce hyperbolic dynamics, ergodic theory and geodesic and horocycle flows, and include an English translation of Hadamard's original proof of the Stable-Manifold Theorem. An outline of the strategy, motivation and context behind the ergodicity proof is followed by a careful exposition of it (using the Hopf argument) and of the pertinent context of Teichmüller theory. Finally, some complementary lectures describe the deep connections between geodesic flows in negative curvature and Diophantine approximation.
Caracteristici
Accessible to graduate students Provides introductions leading to the forefront of several current research areas A broad sampling of ergodic geometry Includes supplementary material: sn.pub/extras