Essentials of the Finite Element Method
Autor Dimitrios G Pavlou, Eugenio Ruoccoen Limba Engleză Paperback – iun 2025
- Step-by-step instructions for developing finite element equations with detailed analysis procedures
- Excel exercises with dynamic inputs and static tests, allowing for innumerable exercise possibilities
- Comprehensive coverage of Higher-order beam models in Finite Element Analysis, often absent in classical textbooks
- Stiffness matrices provided for commonly used engineering elements in practice
- Theoretical resources for conducting FE analysis on isotropic and orthotropic materials
- Integrated solutions for engineering examples and computer algorithms in Mathematica, MATLAB, Ansys, and Excel platforms, with detailed explanations
Preț: 719.31 lei
Preț vechi: 790.45 lei
-9% Nou
Puncte Express: 1079
Preț estimativ în valută:
137.74€ • 141.92$ • 115.58£
137.74€ • 141.92$ • 115.58£
Carte nepublicată încă
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780443247408
ISBN-10: 0443247404
Pagini: 550
Dimensiuni: 191 x 235 mm
Ediția:2
Editura: ELSEVIER SCIENCE
ISBN-10: 0443247404
Pagini: 550
Dimensiuni: 191 x 235 mm
Ediția:2
Editura: ELSEVIER SCIENCE
Cuprins
1. An overview of the finite element method
2. Mathematical background
3. Bar, spring, hydraulic elements, and corresponding networks
4. Euler-bernoulli, ehrenfest-timoshenko and reddy beam models
5. Frames
6. Kirchhoff, mindlin and reddy plate models
7. The principle of minimum potential energy
8. From “isotropic” to “orthotropic” plane elements: elasticity equations for two-dimensional solids
9. The principle of minimum potential energy for two-dimensional and three-dimensional elements
10. Structural dynamics and elastic stability
11. Heat transfer
2. Mathematical background
3. Bar, spring, hydraulic elements, and corresponding networks
4. Euler-bernoulli, ehrenfest-timoshenko and reddy beam models
5. Frames
6. Kirchhoff, mindlin and reddy plate models
7. The principle of minimum potential energy
8. From “isotropic” to “orthotropic” plane elements: elasticity equations for two-dimensional solids
9. The principle of minimum potential energy for two-dimensional and three-dimensional elements
10. Structural dynamics and elastic stability
11. Heat transfer