Existence Theory for Generalized Newtonian Fluids
Autor Dominic Breiten Limba Engleză Paperback – 22 mar 2017
- Provides the state-of-the-art of the mathematical theory of Generalized Newtonian fluids
- Combines elliptic, parabolic and stochastic problems within existence theory under one umbrella
- Focuses on the construction of the solenoidal Lipschitz truncation, thus enabling readers to apply it to mathematical research
- Approaches stochastic PDEs with a perspective uniquely suitable for analysis, providing an introduction to Galerkin method for SPDEs and tools for compactness
Preț: 431.37 lei
Nou
Puncte Express: 647
Preț estimativ în valută:
82.54€ • 87.17$ • 68.69£
82.54€ • 87.17$ • 68.69£
Carte disponibilă
Livrare economică 23 decembrie 24 - 06 ianuarie 25
Livrare express 06-12 decembrie pentru 32.20 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128110447
ISBN-10: 0128110449
Pagini: 286
Dimensiuni: 152 x 229 x 17 mm
Greutate: 0.39 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0128110449
Pagini: 286
Dimensiuni: 152 x 229 x 17 mm
Greutate: 0.39 kg
Editura: ELSEVIER SCIENCE
Public țintă
Scientists and graduate students with basic knowledge in nonlinear partial differential equations and interest in mathematical fluid mechanicsCuprins
Part 1: Stationary problems1: Preliminaries2: Fluid mechanics and Orlicz spaces3: Solenoidal Lipschitz truncation4: Prandtl–Eyring fluids
Part 2: Non-stationary problems5: Preliminaries6: Solenoidal Lipschitz truncation7: Power law fluids
Part 3: Stochastic problems8: Preliminaries9: Stochastic PDEs10: Stochastic power law fluids
Appendix A: Function spacesAppendix B: The A-Stokes systemAppendix C: Itô's formula in infinite dimensions
Part 2: Non-stationary problems5: Preliminaries6: Solenoidal Lipschitz truncation7: Power law fluids
Part 3: Stochastic problems8: Preliminaries9: Stochastic PDEs10: Stochastic power law fluids
Appendix A: Function spacesAppendix B: The A-Stokes systemAppendix C: Itô's formula in infinite dimensions
Recenzii
"The main tools used in the book are related with Sobolev, Lebesgue and Orlicz spaces, with Bogovskii operator and with some special Korn-type inequalities...A large number of proofs and details are given, very useful for those interested in this field." --Zentralblatt MATH