Explorations in the Mathematics of Data Science: The Inaugural Volume of the Center for Approximation and Mathematical Data Analytics: Applied and Numerical Harmonic Analysis
Editat de Simon Foucart, Stephan Wojtowytschen Limba Engleză Hardback – 2 oct 2024
Din seria Applied and Numerical Harmonic Analysis
- Preț: 391.27 lei
- Preț: 310.86 lei
- 19% Preț: 443.08 lei
- 20% Preț: 659.40 lei
- 17% Preț: 431.76 lei
- Preț: 404.28 lei
- 15% Preț: 538.94 lei
- 15% Preț: 640.75 lei
- 18% Preț: 993.71 lei
- 15% Preț: 634.82 lei
- Preț: 405.06 lei
- 15% Preț: 522.13 lei
- 15% Preț: 633.54 lei
- 15% Preț: 640.75 lei
- Preț: 389.39 lei
- 15% Preț: 643.15 lei
- 15% Preț: 648.60 lei
- 24% Preț: 829.71 lei
- 18% Preț: 937.73 lei
- 15% Preț: 635.63 lei
- 15% Preț: 641.52 lei
- 15% Preț: 623.93 lei
- Preț: 390.36 lei
- 20% Preț: 569.85 lei
- Preț: 384.33 lei
- 18% Preț: 1099.00 lei
- Preț: 379.96 lei
- 18% Preț: 986.32 lei
- 20% Preț: 567.32 lei
- 20% Preț: 573.76 lei
- Preț: 398.62 lei
- Preț: 379.59 lei
- 5% Preț: 1145.01 lei
- Preț: 392.79 lei
- Preț: 390.14 lei
- 15% Preț: 631.45 lei
- 19% Preț: 575.82 lei
- 15% Preț: 689.47 lei
- 20% Preț: 327.98 lei
- 15% Preț: 514.92 lei
- Preț: 396.91 lei
- 15% Preț: 526.13 lei
Preț: 878.23 lei
Preț vechi: 1071.01 lei
-18% Nou
Puncte Express: 1317
Preț estimativ în valută:
168.08€ • 174.59$ • 139.61£
168.08€ • 174.59$ • 139.61£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031664960
ISBN-10: 3031664965
Ilustrații: XIV, 206 p. 13 illus., 10 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.6 kg
Ediția:2024
Editura: Springer Nature Switzerland
Colecția Birkhäuser
Seria Applied and Numerical Harmonic Analysis
Locul publicării:Cham, Switzerland
ISBN-10: 3031664965
Ilustrații: XIV, 206 p. 13 illus., 10 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.6 kg
Ediția:2024
Editura: Springer Nature Switzerland
Colecția Birkhäuser
Seria Applied and Numerical Harmonic Analysis
Locul publicării:Cham, Switzerland
Cuprins
Preface.- S-Procedure Relaxation: a Case of Exactness Involving Chebyshev Centers.- Neural networks: deep, shallow, or in between?.- Qualitative neural network approximation over R and C.- Linearly Embedding Sparse Vectors from l2 to l1 via Deterministic Dimension-Reducing Maps.- Ridge Function Machines.- Learning Collective Behaviors from Observation.- Provably Accelerating Ill-Conditioned Low-Rank Estimation via Scaled Gradient Descent, Even with Overparameterization.- CLAIRE: Scalable GPU-Accelerated Algorithms for Diffeomorphic Image Registration in 3D.- A genomic tree based sparse solver.- A qualitative difference between gradient flows of convex functions in finite- and infinite-dimensional Hilbert spaces.
Textul de pe ultima copertă
This edited volume reports on the recent activities of the new Center for Approximation and Mathematical Data Analytics (CAMDA) at Texas A&M University. Chapters are based on talks from CAMDA’s inaugural conference – held in May 2023 – and its seminar series, as well as work performed by members of the Center. They showcase the interdisciplinary nature of data science, emphasizing its mathematical and theoretical foundations, especially those rooted in approximation theory.
Caracteristici
Explores the most recent developments in the mathematics of data science Highlights the activities of the Center for Approximation and Mathematical Data Analytics (CAMDA) Focuses on the theoretical foundations of data science, especially those in Approximation Theory