Cantitate/Preț
Produs

Field Theory Concepts: Electromagnetic Fields. Maxwell’s Equations grad, curl, div. etc. Finite-Element Method. Finite-Difference Method. Charge Simulation Method. Monte Carlo Method

Autor Adolf J. Schwab
en Limba Engleză Paperback – 14 apr 2012
"Field Theory Concepts" is a new approach to the teachingand understanding of field theory. Exploiting formal analo-gies of electric, magnetic, and conduction fields andintroducing generic concepts results in a transparentlystructured electomagnetic field theory. Highly illustrativeterms alloweasyaccess to the concepts of curl and div whichgenerally are conceptually demanding. Emphasis is placed onthe static, quasistatic and dynamic nature of fields.Eventually, numerical field calculation algorithms, e.g.Finite Element method and Monte Carlo method, are presentedin a concise yet illustrative manner.
Citește tot Restrânge

Preț: 37209 lei

Nou

Puncte Express: 558

Preț estimativ în valută:
7121 7513$ 5935£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642489433
ISBN-10: 3642489435
Pagini: 236
Ilustrații: XVI, 218 p.
Dimensiuni: 170 x 244 x 12 mm
Greutate: 0.38 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1 Elementary Concepts of Electric and Magnetic Fields.- 1.1 Flux and Flux Density of Vector Fields.- 1.2 Equations of Matter — Constitutive Relations.- 2 Types of Vector Fields.- 2.1 Electric Source Fields.- 2.2 Electric and Magnetic Vortex Fields.- 2.3 General Vector Fields.- 3 Field Theory Equations.- 3.1 Integral Form of Maxwells Equations.- 3.2 Law of Continuity in Integral Form Source Strength of Current Density Fields.- 3.3 Differential Form of Maxwell’s Equations.- 3.4 Law of Continuity in Differential Form Source Density of Current Density Fields.- 3.5 Maxwell’s Equations in Complex Notation.- 3.6 Integral Theorems of Stokes and Gauss.- 3.7 Network Model of Induction.- 4 Gradient, Potential, Potential Function.- 4.1 Gradient of a Scalar Field.- 4.2 Potential and Potential Function of Static Electric Fields.- 4.3 Development of the Potential Function from a Given Charge Distribution.- 4.4 Potential Equations.- 4.5 Electric Vector Potential.- 4.6 Vector Potential of the Conduction Field.- 5 Potential and Potential Function of Magnetostatic Fields.- 5.1 Magnetic Scalar Potential.- 5.2 Potential Equation for Magnetic Scalar Potentials.- 5.3 Magnetic Vector Potential.- 5.4 Potential Equation for Magnetic Vector Potentials.- 6 Classification of Electric and Magnetic Fields.- 6.1 Stationary Fields.- 6.2 Quasi-Stationary Fields (Steady-State) Fields.- 6.3 Nonstationary Fields, Electromagnetic Waves.- 7 Transmission-Line Equations.- 8 Typical Differential Equations of Electrodynamics and Mathematical Physics.- 8.1 Generalized Telegraphist’s Equation.- 8.2 Telegraphist’s Equation with a, b>0; c=0.- 8.3 Telegraphist’s Equation with a>0; b=0; c=0.- 8.4 Telegraphist’s Equation with b>0; a=0; c=0.- 8.5 Helmholtz Equation.- 8.6 Schroedinger Equation.- 8.7Lorentz’s Invariance of Maxwell’s Equations.- 9 Numerical Calculation of Potential Fields.- 9.1 Finite-Element Method.- 9.2 Finite-Difference Method.- 9.3 Charge Simulation Method.- 9.4 Monte Carlo Method.- 9.5 General Remarks on Numerical Field Calculation.- A1 Units.- A2 Scalar and Vector Integrals.- A3 Vector Operations in Special Coordinate Systems.- A5 Complex Notation of Harmonic Quantities.- Literature.