Cantitate/Preț
Produs

Financial Data Resampling for Machine Learning Based Trading: Application to Cryptocurrency Markets: SpringerBriefs in Applied Sciences and Technology

Autor Tomé Almeida Borges, Rui Neves
en Limba Engleză Paperback – 23 feb 2021
This book presents a system that combines the expertise of four algorithms, namely Gradient Tree Boosting, Logistic Regression, Random Forest and Support Vector Classifier to trade with several cryptocurrencies. A new method for resampling financial data is presented as alternative to the classical time sampled data commonly used in financial market trading. The new resampling method uses a closing value threshold to resample the data creating a signal better suited for financial trading, thus achieving higher returns without increased risk. The performance of the algorithm with the new resampling method and the classical time sampled data are compared and the advantages of using the system developed in this work are highlighted.
Citește tot Restrânge

Din seria SpringerBriefs in Applied Sciences and Technology

Preț: 48111 lei

Nou

Puncte Express: 722

Preț estimativ în valută:
9210 9472$ 7641£

Carte tipărită la comandă

Livrare economică 17 februarie-03 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030683788
ISBN-10: 3030683788
Pagini: 93
Ilustrații: XV, 93 p. 30 illus., 28 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.45 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile SpringerBriefs in Applied Sciences and Technology, SpringerBriefs in Computational Intelligence

Locul publicării:Cham, Switzerland

Recenzii

“The book contains little theory and presents mostly detailed numerical experiments, it reads very engagingly and inspires with many ideas. It is certainly not a reference book but rather a short monograph on a very clearly defined topic. It will be interesting to see whether the trading strategies presented can be transferred from the crypto markets to the presumably more efficient standard stock markets … as published strategies tend to make markets more efficient.” (Volker H. Schulz, SIAM Review, Vol. 64 (3), September, 2022)

Notă biografică

Tomé Almeida Borges is a data scientist at Santander Portugal since December 2019. He received the master’s degree in Electrical and Computer Engineering from Instituto Superior Técnico, Technical University of Lisbon, Portugal, in 2019. His research activity is focused on pattern recognition and data resampling methods of financial markets.
Rui Ferreira Neves is a professor at Instituto Superior Técnico since 2005. He received the Diploma in Engineering and the Ph.D. degrees in Electrical and Computer Engineering from the Instituto Superior Técnico, Technical University of Lisbon, Portugal, in 1993 and 2001, respectively. In 2006, he joined Instituto de Telecomunicações (IT) as a research associate. His research activity deals with evolutionary computation and pattern matching applied to the financial markets, sensor networks, embedded systems and mixed signal integrated circuits. He uses both fundamental, technical and pattern matching indicators to find the evolutionof the financial markets.

Caracteristici

Presents a framework consisting of several supervised machine learning procedures to trade in the Cryptocurrencies Market Compares the performance of 5 different forecasting trading signals among themselves and with a Buy and Hold strategy as baseline Proposes a new method for resampling financial data