Cantitate/Preț
Produs

Flexible Supercapacitor Nanoarchitectonics

Autor I Inamuddin
en Limba Engleză Hardback – 19 aug 2021
The 21 chapters in this book presents a comprehensive overview of flexible supercapacitors using engineering nanoarchitectures mediated by functional nanomaterials and polymers as electrodes, electrolytes, and separators, etc. for advanced energy applications. The various aspects of flexible supercapacitors, including capacitor electrochemistry, evaluating parameters, operating conditions, characterization techniques, different types of electrodes, electrolytes, and flexible substrates are covered. This is probably the first book of its type which systematically describes the recent developments and progress in flexible supercapacitor technology, and will be very helpful for generating new and innovative ideas in the field of energy storage material for wearable/flexible industry applications.
Citește tot Restrânge

Preț: 118259 lei

Preț vechi: 174225 lei
-32% Nou

Puncte Express: 1774

Preț estimativ în valută:
22640 23533$ 18771£

Carte indisponibilă temporar

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781119711452
ISBN-10: 1119711452
Pagini: 672
Dimensiuni: 160 x 239 x 40 mm
Greutate: 1.09 kg
Editura: Wiley
Locul publicării:Hoboken, United States

Notă biografică

Inamuddin PhD is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy and environmental science. He has published about 150 research articles in various international scientific journals, 18 book chapters, and edited 60 books with multiple well-known publishers. Mohd Imran Ahamed PhD is in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in SCI journals. His research focuses on ion-exchange chromatography, wastewater treatment and analysis, actuators and electrospinning. Rajender Boddula PhD is currently working for the Chinese Academy of Sciences President's International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals, edited books with numerous publishers and has authored 20 book chapters. Tariq Altalhi PhD is Head of the Department of Chemistry and Vice Dean of Science College at Taif University, Saudi Arabia. He received his PhD from the University of Adelaide, Australia in 2014. His research interests include developing advanced chemistry-based solutions for solid and liquid municipal waste management, converting plastic bags to carbon nanotubes, and fly ash to efficient adsorbent material.

Cuprins

Preface xvii 1 Electrodes for Flexible Integrated Supercapacitors 1 Sajid ur Rehman and Hong Bi 1.1 Introduction and Overview of Supercapacitors 2 1.2 Electrode Materials for Flexible Supercapacitors 4 1.2.1 Carbon Materials 4 1.2.1.1 Activated Carbon 4 1.2.1.2 Carbon Nanotubes 5 1.2.1.3 Graphene 6 1.2.1.4 Carbon Aerogels 8 1.2.1.5 Graphene Hydrogel 8 1.2.2 Conducting Polymers 10 1.2.3 Metal Compounds 13 1.2.3.1 Ruthenium Oxide (RuO2) Electrode Material 14 1.2.3.2 Nickel Oxide (NiO) Electrode Material 15 1.2.3.3 Copper Oxide (CuO) Electrode Material 16 1.2.3.4 Composite Electrode Materials 17 1.3 Device Architecture of Flexible Supercapacitor 18 1.4 Integration of Flexible Supercapacitors 19 1.5 Conclusion 21 References 22 2 Flexible Supercapacitors Based on Fiber-Shape Electrodes 27 Faiza Bibi, Muhammad Inam Khan, Abdur Rahim, Nawshad Muhammad and Lucas S.S. Santos 2.1 Introduction 27 2.2 Supercapacitors 29 2.2.1 Electrochemical Supercapacitor 29 2.2.2 Flexible Supercapacitors 30 2.3 Shape Dependent Flexible Electrodes 31 2.3.1 Porous 3D Flexible Electrodes 32 2.3.2 Flexible Paper Electrodes 32 2.3.3 Flexible Fiber Electrodes 33 2.4 Fiber Shape Electrodes (FE/FSC) 34 2.4.1 Wrapping Fiber Shape Electrode/Supercapacitors 34 2.4.2 Coaxial Fiber Shape Electrode/Supercapacitor 35 2.4.3 Parallel Fiber Shape Electrode/Supercapacitor 36 2.4.4 Twisted Fiber Shape Electrode/Supercapacitor 37 2.4.5 Rolled Fiber Shape Electrode/Supercapacitors 38 2.5 Conclusion 39 References 40 3 Graphene-Based Electrodes for Flexible Supercapacitors 43 Jyoti Raghav, Sapna Raghav and Pallavi Jain 3.1 Introduction 43 3.2 Type of SCs 44 3.2.1 EDLC 44 3.2.2 PCs 45 3.2.3 Flexible Graphene-Based Nano Composites 45 3.3 Fabrication Techniques for the Electrode Materials 46 3.3.1 Electrodeposition 46 3.3.2 Direct Coating (DC) 46 3.3.3 Chemical Vapor Deposition (CVD) 48 3.3.4 Hydrothermal 48 3.4 Substrate Materials for the Flexible SCs 48 3.5 Graphene Nanocomposite-Based Electrode Materials 49 3.5.1 Additives/Graphene Electrodes 49 3.5.2 Binder/Graphene Electrodes 49 3.5.3 Pure Graphene Electrode 50 3.5.4 Conductive Polymers/Graphene Composites Electrode 50 3.5.5 Metal or Metal Oxides (MOs) Composite Electrodes 51 3.6 NSs for the Flexible SC 52 3.7 Conclusion 53 Acknowledgment 54 References 54 4 Polymer-Based Flexible Substrates for Flexible Supercapacitors 59 Zul Adlan Mohd Hir, Shaari Daud, Hartini Ahmad Rafaie, Nurul Infaza Talalah Ramli and Mohamad Azuwa Mohamed 4.1 Introduction 60 4.2 Polymers-Based Flexible Materials for Flexible Supercapacitors 61 4.3 Synthesis and Fabrication Approach of the Polymer-Based Electrode 62 4.3.1 Preparation of Polymer-Based Electrode Materials 62 4.3.1.1 Polyaniline (PANI) 63 4.3.1.2 Polypyrrole (PPy) 65 4.3.1.3 Poly (3,4-ethylenedioxythiophene) (PEDOT) 66 4.3.2 Electrode Fabrication 69 4.4 Physicochemical Characterization of Flexible Supercapacitors 70 4.4.1 Scanning Electron Microscopy 70 4.4.2 Transmission Electron Microscopy 71 4.4.3 X-Ray Diffraction 73 4.4.4 Surface Area Analysis by BET (Brunauer, Emmett and Teller) 75 4.4.5 X-Ray Photoelectron Spectroscopy (XPS) 78 4.5 Recent Findings on the Performance of Flexible Supercapacitors 79 4.5.1 Electrochemical Double-Layer Capacitor (EDLC) 80 4.5.2 Pseudocapacitor 81 4.5.3 Hybrid Supercapacitor 83 4.6 Conclusion 86 References 87 5 Carbon Substrates for Flexible Supercapacitors and Energy Storage Applications 95 Seyyed Mojtaba Mousavi, Seyyed Alireza Hashemi, Najmeh Parvin, Chin Wei Lai, Sonia Bahrani, Wei-Hung Chiang and Sargol Mazraedoost 5.1 Introduction 96 5.2 Overview of the Energy Storage System 98 5.3 Capacitors Modeling 109 5.3.1 Equivalent Circuit Models 120 5.3.2 Intelligent Models 121 5.3.3 Self-Discharge 122 5.3.4 Fractional-Order Models 122 5.3.5 Thermal Modeling 123 5.4 Industrial Applications of Capacitors 124 5.4.1 Power Electronics 124 5.4.2 Uninterruptible Power Supplies 125 5.4.3 Hybrid Energy Storage 126 5.5 Conclusions 127 References 127 6 Organic Electrolytes for Flexible Supercapacitors 143 Younus Raza Beg, Gokul Ram Nishad and Priyanka Singh 6.1 Introduction 143 6.2 Organic Electrolytes 145 6.3 Solid and Quasi-Solid-State Electrolytes 150 6.3.1 PVA-Based Gel Electrolytes 154 6.3.2 PEG-Based Gel Electrolytes 156 6.3.3 PVDF-Based Gel Electrolytes 157 6.4 Ionic Liquids-Based Electrolytes 159 6.5 Redox Active Electrolytes 165 6.6 Conclusion 167 References 170 7 Carbon-Based Electrodes for Flexible Supercapacitors Beyond Graphene 177 Sunil Kumar and Rashmi Madhuri 7.1 Introduction 178 7.2 Materials Used to Prepare Flexible Supercapacitors 179 7.2.1 Carbon Materials 180 7.2.1.1 Activated Carbon (AC) 180 7.2.1.2 Carbon Nanotubes (CNTs) 180 7.2.1.3 Graphene 181 7.2.1.4 Carbon Aerogel 181 7.2.2 Conducting Polymer 181 7.2.3 Metal Oxide 182 7.3 The Carbon-Based Electrode Used for Flexible Supercapacitors 182 7.3.1 Carbon Nanotube (CNT)-Based Materials 182 7.3.1.1 CNT-Conducting Polymer Composite as Supercapacitors 182 7.3.1.2 CNT-Metal Oxide Composite as Supercapacitors 185 7.3.2 Activated Carbon-Based Materials 191 7.3.2.1 Activated Carbon-Conducting Polymer Composite as a Supercapacitor 191 7.3.2.2 Activated Carbon-Metal Oxide Composite as a Supercapacitor 195 7.4. Conclusion 201 References 201 8 Biomass-Derived Electrodes for Flexible Supercapacitors 211 Selvasundarasekar Sam Sankar and Subrata Kundu 8.1 Introduction 211 8.1.1 Electrode Materials for Flexible Supercapacitors 213 8.2 Biomass-Derived Carbon Materials 214 8.2.1 Activation 214 8.2.1.1 Physical Activation 215 8.2.1.2 Chemical Activation 215 8.2.1.3 Other Activation 218 8.2.2 Carbonization 218 8.2.2.1 Hydrothermal Method 218 8.2.2.2 Pyrolysis Method 219 8.3 Incorporation of Biomass-Based Electrodes in Flexible Supercapacitors 220 8.4 Challenges for Using Biomass-Derived Materials 222 8.5 Conclusion 224 References 225 9 Conducting Polymer Electrolytes for Flexible Supercapacitors 233 Aqib Muzaffar, M. Basheer Ahamed and Kalim Deshmukh 9.1 Introduction 234 9.2 Components of a Supercapacitor 236 9.2.1 Electrodes 236 9.2.2 Electrolytes 237 9.2.3 Separator 238 9.2.4 Current Collectors 239 9.2.5 Sealants 239 9.3 Configuration of a Supercapacitor 240 9.4 Conducting Polymer Electrolytes 241 9.4.1 Gel Conducting Polymer Electrolytes 243 9.4.2 Ionic Liquid-Based Conducting Polymer 246 9.4.3 OH. Ion Conducting Polymers 247 9.5 Conclusion 252 References 252 10 Inorganic Electrodes for Flexible Supercapacitor 263 Muhammad Inam Khan, Faiza Bibi, Muhammad Mudassir Hassan, Nawshad Muhammad, Muhammad Tariq and Abdur Rahim 10.1 Introduction 264 10.2 Flexible Inorganic Electrode Based on Carbon Nanomaterial 265 10.2.1 Carbonaceous Material 265 10.2.1.1 Graphene 266 10.2.1.2 Graphene Oxide-Based Electrodes 268 10.2.1.3 Carbon Nanotubes 269 10.2.1.4 Carbon Films/Textiles 271 10.3 Conclusion 272 References 273 11 New-Generation Materials for Flexible Supercapacitors 277 P.E. Lokhande, U.S. Chavan, Suraj Bhosale, Amol Kalam and Sonal Deokar 11.1 Introduction 277 11.2 Taxonomy of Supercapacitor 278 11.3 Fundamentals of Supercapacitor 280 11.4 Flexible Supercapacitor 282 11.4.1 Graphene-Based Flexible Supercapacitor 282 11.4.2 Metal Oxide/Hydroxide-Based Flexible Supercapacitor 284 11.4.3 Conducting Polymer-Based Flexible Supercapacitor 290 11.5 Outlook and Perspectives 298 Acknowledgement 303 References 303 12 Asymmetric Flexible Supercapacitors: An Overview of Principle, Materials and Mechanism 315 Sabina Yeasmin and Debajyoti Mahanta 12.1 Introduction: Why Store Energy? 316 12.2 Supercapacitor: A Green Approach Towards Energy Storage 316 12.3 Flexible Supercapacitors 319 12.3.1 Solid Electrolytes 320 12.3.2 Flexible Electrodes 322 12.3.3 Cell Designs for Flexible Supercapacitor 324 12.4 Asymmetric Supercapacitor 325 12.4.1 Principle, Material and Mechanism 325 12.4.2 Performance Evaluation in Asymmetric Supercapacitor 330 12.5 Recent Advances in Flexible Asymmetric Supercapacitors 333 12.6 Conclusion 335 References 335 13 Aqueous Electrolytes for Flexible Supercapacitors 349 Dipanwita Majumdar 13.1 Introduction 350 13.1.1 Influence of Electrolytes on Performance of Supercapacitors 352 13.1.2 What is an Ideal Electrolyte? 354 13.1.3 Classes of Electrolytes for Supercapacitors 355 13.2 Electrolyte Performance-Controlling Parameters for Designing Flexible Supercapacitors 357 13.2.1 Large Electrochemical Stability 357 13.2.2 High Ionic Conductivity 357 13.2.3 Nature of Electrolyte 358 13.2.4 Dielectric Constant and Viscosity of Solvent 358 13.2.5 Low Melting and High Boiling Points 359 13.2.6 High Chemical Stability 360 13.2.7 High Flash Point 360 13.2.8 Low Cost and Availability 360 13.2.9 Influence of Pressure 360 13.2.10 Influence of Binder 361 13.3 Why Aqueous Electrolytes? 362 13.4 Acid Electrolytes 363 13.4.1 EDLC and Pseudocapacitor Electrode Materials Employing H2SO4 Aqueous Electrolyte 375 13.4.2 H2SO4 Electrolyte-Based Nanocomposite Electrode Material Supercapacitors 377 13.4.3 H2SO4 Electrolyte-Based Hybrid Supercapacitors 377 13.5 Alkaline Electrolytes 378 13.5.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors 379 13.5.2 Alkaline Electrolyte-Based Nanocomposite Supercapacitors 381 13.5.3 Alkaline Electrolyte-Based Hybrid Supercapacitors 383 13.6 Neutral Electrolyte 383 13.6.1 Neutral Salt Aqueous Electrolyte-Based EDLC and Pseudocapacitors 384 13.6.2 Neutral Salt Aqueous Electrolyte-Based Nanocomposite Supercapacitors 387 13.6.3 Neutral Electrolyte-Based Hybrid Supercapacitors 388 13.7 Comparative Electrochemical Performances in Different Aqueous Electrolytes 388 13.8 Water-in-Salt Electrolytes for Flexible Supercapacitors 394 13.9 Conclusion and Future Prospects 395 Acknowledgements 396 References 396 14 Electrodes for Flexible Micro-Supercapacitors 413 Subrata Ghosh, Jiacheng Wang, Gustavo Tontini and Suelen Barg 14.1 Introduction 413 14.2 Electrode Configurations 414 14.2.1 Sandwich muSCs 414 14.2.2 Fiber or Wire muSC 415 14.2.2.1 Parallel 416 14.2.2.2 Twisted or Two-Ply 417 14.2.2.3 Coaxial 417 14.2.2.4 Rolled 417 14.2.2.5 All-in-One 418 14.2.3 Interdigitated muSCs 418 14.3 Manufacturing Techniques 421 14.3.1 Photolithography 421 14.3.2 Electrodeposition 422 14.3.3 Laser Direct-Writing 422 14.3.3.1 Laser Carving 423 14.3.3.2 Laser Scribing 423 14.3.3.3 Laser Transfer Method 424 14.3.4 Printing 425 14.3.4.1 Screen Printing 426 14.3.4.2 Inkjet Printing 427 14.3.4.3 3D Printing 428 14.4 State-of-the-Art Electrode Materials 431 14.4.1 Nanocarbons 431 14.4.2 MXenes 433 14.4.3 Transition-Metal Chalcogenides 435 14.4.4 Metal-Based Materials 435 14.4.5 Conducting Polymers 438 14.4.6 Composites or Hybrid Structures 440 14.4.7 Symmetric vs Asymmetric 441 14.5 Conclusion and Outlook 445 Acknowledgement 446 References 447 15 Electrodes for Flexible Self-Healable Supercapacitors 461 Ayesha Taj, Rabisa Zia, Sumaira Younis, Hunza Hayat, Waheed S. Khan and Sadia Z. Bajwa 15.1 Introduction 462 15.1.1 Supercapacitors 463 15.1.2 Electric Double Layer Capacitors (EDLCs) 464 15.1.3 Hybrid Capacitors 467 15.2 Self-Healable Nanomaterials 468 15.2.1 Metallic Nanomaterials 468 15.2.2 Non-Metallic/Carbon-Based Nanomaterials 470 15.2.3 Conducting Polymer-Based Nanomaterials 471 15.3 Nanomaterials-Based Interfaces for Supercapacitors 472 15.3.1 Metal Nanomaterials-Based Interfaces for Supercapacitors 473 15.3.2 Graphene-Based Interfaces for Self-Healable Supercapacitors 474 15.3.3 CNT/GO/PANI Composites Supercapacitors 478 15.4 Conclusion 479 References 480 16 Electrodes for Flexible-Stretchable Supercapacitors 485 Ravi Arukula, Pawan K. Kahol and Ram K. Gupta 16.1 Introduction 486 16.1.1 Supercapacitors and Energy Storage Mechanisms 487 16.1.2 Flexible/Stretchable Supercapacitors 489 16.2 Electrodes for Flexible/Stretchable Supercapacitors 490 16.2.1 Metal Oxide-Based Flexible/Stretchable Supercapacitors 491 16.2.1.1 Vanadium-Based Flexible Electrodes 493 16.2.1.2 Manganese-Based Flexible/Stretchable Electrodes 494 16.2.1.3 Ruthenium-Based Flexible Electrodes 496 16.2.1.4 Other Metal Oxides-Based Flexible Electrodes 498 16.2.2 2D Materials-Based Flexible/Stretchable Supercapacitors 499 16.2.3 Carbon-Based Flexible/Stretchable Supercapacitors 504 16.2.4 Conductive Polymer-Based Flexible/Stretchable Supercapacitors 505 16.2.5 Hybrid Composites-Based Flexible/Stretchable Supercapacitors 507 16.3 Conclusion and Future Remarks 511 References 512 17 Fabrication Approaches of Energy Storage Materials for Flexible Supercapacitors 533 Mohan Kumar Anand Raj, Rajasekar Rathanasamy, Prabhakaran Paramasivam and Santhosh Sivaraj Abbreviations 533 17.1 Intoduction 534 17.2 Classification of Flexible Supercapacitors 536 17.2.1 Materials 536 17.2.1.1 Carbon 536 17.2.1.2 Metal Oxides 537 17.2.1.3 Conducting Polymers 537 17.2.1.4 Composites 537 17.2.2 Fabrication Methods 538 17.2.2.1 Electro-Chemical Deposition Method 538 17.2.2.2 Chemical Bath Deposition (CBD) Process 539 17.2.2.3 Inkjet Printing 540 17.2.2.4 Spray Deposition Method 541 17.2.2.5 Sol-Gel Technique 542 17.2.2.6 Direct Writing Method 543 17.3 Conclusion 544 References 545 18 Nature-Inspired Electrodes for Flexible Supercapacitors 549 Aqib Muzaffar, M. Basheer Ahamed and Kalim Deshmukh 18.1 Introduction 549 18.2 Energy Storing Mechanism of Supercapacitors 552 18.2.1 Electrostatic Double Layer Capacitor (EDLC) 554 18.2.2 Pseudocapacitor 555 18.2.3 Hybrid Supercapacitor 556 18.3 Flexible Supercapacitors 557 18.4 Essential Parameters of Supercapacitors 560 18.4.1 Energy Density Parameter 560 18.4.2 Power Density Parameter 561 18.5 Natural Flexible Supercapacitors 561 18.6 Conclusion 565 References 565 19 Ionic Liquid Electrolytes for Flexible Supercapacitors 575 Udaya Bhat K. and Devadas Bhat Panemangalore Abbreviations 575 19.1 Introduction 577 19.2 Mobile Energy Storage Systems and Supercapacitors 578 19.3 Flexible Supercapacitors: Need and Challenges 580 19.4 Developments in the Design of a Supercapacitor 581 19.5 Electrolytes for Flexible Supercapacitors 583 19.5.1 Aqueous Electrolytes 583 19.5.2 Solid Electrolytes 584 19.5.3 Liquid Electrolytes 584 19.5.4 Ionic Liquid (IL) Electrolytes 585 19.6 Gel Polymer Electrolytes (GPEs) 586 19.7 Development in ILEs 588 19.8 Design Flexibility With IL Electrolytes 594 19.9 Electrolyte-Electrode Hybrid Design 596 19.10 Ionic Liquid Electrolytes and Problem of Leakage 597 19.11 Mechanical Stability of ILs 597 19.12 Conclusions 598 References 598 20 Conducting Polymer-Based Flexible Supercapacitor Devices 611 nand I. Torvi, Satishkumar R. Naik, Sachin N. Hegde, Mohemmedumar Mulla, Ravindra R. Kamble, Geoffrey R. Mitchell and Mahadevappa Y. Kariduraganavar 20.1 Introduction 612 20.2 Principles of Supercapacitor 612 20.3 Classification of Supercapacitors 613 20.3.1 Electrochemical Double-Layer Capacitors 613 20.3.2 Pseudocapacitors 613 20.3.2.1 Conducting Polymers 614 20.4 Conducting Polymer-Based Flexible Supercapacitors 615 20.4.1 Polyaniline-Based Flexible Supercapacitors 616 20.4.2 Polypyrrole-Based Flexible Supercapacitors 618 20.4.3 Polythiophene and its Derivatives-Based Flexible Supercapacitors 621 20.5 Electrolytes for Flexible Supercapacitors 624 20.6 Conclusions and Future Perspectives 626 Acknowledgements 626 References 626 Index 635