Cantitate/Preț
Produs

Forward Recoil Spectrometry: Applications to Hydrogen Determination in Solids

Autor Y. Serruys, J. Tirira, P. Trocellier
en Limba Engleză Paperback – 2 oct 2011
The practical properties of many materials are dominated by surface and near-surface composition and structure. An understanding of how the surface region affects material properties starts with an understanding of the elemental composition of that region. Since the most common contaminants are light elements (for example, oxygen, nitrogen, carbon, and hydrogen), there is a clear need for an analytic probe that simultaneously and quantitatively records elemental profiles of all light elements. Energy recoil detection using high-energy heavy ions is unique in its ability to provide quantitative profiles of light and medium mass elements. As such this method holds great promise for the study of a variety of problems in a wide range of fields. While energy recoil detection is one of the newest and most promising ion beam analytic techniques, it is also the oldest in terms of when it was first described. Before discussing recent developments in this field, perhaps it is worth reviewing the early days of this century when the first energy recoil detection experiments were reported.
Citește tot Restrânge

Preț: 39015 lei

Nou

Puncte Express: 585

Preț estimativ în valută:
7469 7681$ 6196£

Carte tipărită la comandă

Livrare economică 19 februarie-05 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461380122
ISBN-10: 146138012X
Pagini: 468
Ilustrații: 434 p.
Dimensiuni: 152 x 229 x 25 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1. Introduction.- 1.1. General Description.- 1.2. Objectives.- 1.3. Topics.- 1.4. Historical Background.- 1.5. Extension of the ERDA Method in IBA Laboratories Worldwide.- 1.6. Conclusion.- References.- 2. Basic Physical Processes of Elastic Spectrometry.- 2.1. Introduction.- 2.2. Kinematics of Elastic Collision.- 2.3. Geometric Considerations.- 2.4. Energy Loss.- 2.5. Straggling.- 2.6. Conclusion.- References.- 3. Elastic Scattering: Cross-Section and Multiple Scattering.- 3.1. Introduction.- 3.2. Elastic Cross Section.- 3.3. Multiple Scattering.- References.- 4. Elastic Spectrometry: Fundamental and Practical Aspects.- 4.1. Introduction.- 4.2. Fundamentals of Recoil Spectrometry.- 4.3. Practical Spectrometry of Real Targets.- References.- 5. Conventional Recoil Spectrometry.- 5.1. Introduction.- 5.2. Mass—Depth and Recoil-Scattered Ion Ambiguities.- 5.3. Glancing Geometry.- 5.4. Transmission Geometry.- 5.5. Sensitivity.- 5.6. Mass Resolution.- References.- 6. Time of Flight ERDA.- 6.1. Introduction.- 6.2. General Considerations.- 6.3. Time of Flight Detector.- 6.4. Electrostatic Mirror Detector.- 6.5. Efficiency and Resolution.- 6.6. Data Analysis Procedure.- 6.7. Conclusion.- References.- 7. Depth Profiling by Means of the ERDA ExB Technique.- 7.1. Introduction.- 7.2. Physics and Properties of the ExB Filter.- 7.3. Practical Considerations.- 7.4. Adjustments for a 350-keV Helium Beam.- 7.5. Depth Profiling with a High-Energy (MeV) Beam.- 7.6. Modified ExB Filter for Heavier Elements.- 7.7. Conclusion.- References.- 8. Recoil Spectrometry with a ?E-E Telescope.- 8.1. Introduction.- 8.2. Experimental Considerations.- 8.3. Performances.- 8.4. Examples.- 8.5. Conclusion.- References.- 9. Coincidence Techniques.- 9.1. Introduction.- 9.2. Transmission Geometry andCoincidence Techniques.- 9.3. Single-Element Analysis with CERDA.- 9.4. Multiple-Element Analysis with CERDA.- 9.5. Scattering Recoil Coincidence Spectroscopy.- 9.6. Elastic Recoil Coincidence Spectroscopy.- 9.7. Position-Sensitive Detectors for Coincidence ERDA Techniques.- 9.8. Conclusion.- References.- 10. Instrumental Equipment.- 10.1. Introduction.- 10.2. Accelerator and Related Equipment.- 10.3. Beam Line.- 10.4. Analysis Chamber.- 10.5. Detection Devices.- 10.6. Conclusion.- References.- 11. Numerical Methods for Recoil Spectra Simulation and Data Processing.- 11.1. Introduction.- 11.2. Simulation Process: Basic Method.- 11.3. Alternative Simulation Process: Retrograde Method.- 11.4. Profile Extraction from Experimental Spectra.- 11.5. Algorithms and Programs.- 11.6. Adaptation to Other ERDA Variants.- 11.7. Conclusion.- References.- 12. Applications of Elastic Recoil Spectrometry to Hydrogen Determination in Solids.- 12.1. Introduction.- 12.2. Applications in Polymer Sciences.- 12.3. Applications to Semiconductor Materials.- 12.4. Applications to Thin Films.- 12.5. Study of Interface Reactions.- 12.6. Other Application Fields.- 12.7. Study of Hydrogen Behavior under Irradiation.- 12.8. Conclusion.- References.- 13. Elastic Recoil Spectrometry Using High-Energy Ions for Hydrogen and Light Element Profiling.- 13.1. Introduction.- 13.2. General Considerations.- 13.3. Experimental Arrangement for HI-ERDA.- 13.4. Detection Capabilities.- 13.5. Application Examples.- 13.6. Conclusion.- References.- 14. Ion-Beam Damaging Effects.- 14.1. Introduction.- 14.2. Basic Considerations on Ion-Beam Damaging.- 14.3. Elemental Losses.- 14.4. Reduction of Radiation Damage.- 14.5. Choice, Preparation, and Stability of Standard Samples.- 14.6. Conclusion.- References.- 15. HydrogenDetermination by Nuclear Resonance.- 15.1. Introduction.- 15.2. General Considerations.- 15.3. Hydrogen Profiling by Nuclear Resonance.- 15.4. Comparison with Elastic Recoil Spectrometry.- 15.5. Conclusion.- References.- General Conclusion.- Acknowledgments.- Appendix A. Basic Data References.- Appendix B. Calculation of the Detection Solid Angle.- Appendix C. Specific Units, Physical Constants, and Conversion Factors.- Appendix D. Recent References.- Appendix E. Acronyms.