Cantitate/Preț
Produs

Fourier Analysis and Hausdorff Dimension: Cambridge Studies in Advanced Mathematics, cartea 150

Autor Pertti Mattila
en Limba Engleză Hardback – 21 iul 2015
During the past two decades there has been active interplay between geometric measure theory and Fourier analysis. This book describes part of that development, concentrating on the relationship between the Fourier transform and Hausdorff dimension. The main topics concern applications of the Fourier transform to geometric problems involving Hausdorff dimension, such as Marstrand type projection theorems and Falconer's distance set problem, and the role of Hausdorff dimension in modern Fourier analysis, especially in Kakeya methods and Fourier restriction phenomena. The discussion includes both classical results and recent developments in the area. The author emphasises partial results of important open problems, for example, Falconer's distance set conjecture, the Kakeya conjecture and the Fourier restriction conjecture. Essentially self-contained, this book is suitable for graduate students and researchers in mathematics.
Citește tot Restrânge

Din seria Cambridge Studies in Advanced Mathematics

Preț: 56933 lei

Preț vechi: 63970 lei
-11% Nou

Puncte Express: 854

Preț estimativ în valută:
10899 11209$ 9042£

Carte tipărită la comandă

Livrare economică 17 februarie-03 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781107107359
ISBN-10: 1107107350
Pagini: 452
Ilustrații: 5 b/w illus.
Dimensiuni: 157 x 235 x 29 mm
Greutate: 0.73 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Cambridge Studies in Advanced Mathematics

Locul publicării:New York, United States

Cuprins

Preface; Acknowledgements; 1. Introduction; 2. Measure theoretic preliminaries; 3. Fourier transforms; 4. Hausdorff dimension of projections and distance sets; 5. Exceptional projections and Sobolev dimension; 6. Slices of measures and intersections with planes; 7. Intersections of general sets and measures; 8. Cantor measures; 9. Bernoulli convolutions; 10. Projections of the four-corner Cantor set; 11. Besicovitch sets; 12. Brownian motion; 13. Riesz products; 14. Oscillatory integrals (stationary phase) and surface measures; 15. Spherical averages and distance sets; 16. Proof of the Wolff–Erdoğan Theorem; 17. Sobolev spaces, Schrödinger equation and spherical averages; 18. Generalized projections of Peres and Schlag; 19. Restriction problems; 20. Stationary phase and restriction; 21. Fourier multipliers; 22. Kakeya problems; 23. Dimension of Besicovitch sets and Kakeya maximal inequalities; 24. (n, k) Besicovitch sets; 25. Bilinear restriction; References; List of basic notation; Author index; Subject index.

Recenzii

'Mattila deserves kudos for having written an excellent text for the community of graduate students and research mathematicians with an analytic bent, one that exposes in considerable detail a particularly rich seam of mathematics at the interface between harmonic analysis and geometric measure theory in Euclidean space … Libraries should be encouraged to buy their copies in haste.' Tushar Das, MAA Reviews
'In addition to a clear, direct writing style, one of the main virtues of this book is the bibliography. (There is a three-page two-column index of authors cited.) Though the book was published in 2015, the author has managed to incorporate references and techniques from many articles that were published as late as 2014. Thus this book is still up to date a few years after its publication. This is an excellent place to begin a study of the interplay between dimension and Fourier transforms.' Benjamin Steinhurst, MathSciNet

Notă biografică


Descriere

Modern text examining the interplay between measure theory and Fourier analysis.