Fundamentals of Data Observability: Implement Trustworthy End-to-End Data Solutions
Autor Andy Petrellaen Limba Engleză Paperback – 24 aug 2023
Quickly detect, troubleshoot, and prevent a wide range of data issues through data observability, a set of best practices that enable data teams to gain greater visibility of data and its usage. If you're a data engineer, data architect, or machine learning engineer, or if the quality of your work depends on the quality of your data, this book shows you how to focus on the practical aspects of introducing data observability in your everyday work.
Author Andy Petrella helps you build the right habits to identify and solve data issues, such as data drifts and poor quality, so you can stop their propagation in data applications, pipelines, and analytics. You'll learn ways to introduce data observability, including setting up a framework for generating and collecting all the information you need.
- Learn the core principles and benefits of data observability
- Use data observability to detect, troubleshoot, and prevent data issues
- Follow the books recipes to implement observability in your data projects
- Use data observability to create a trustable communication framework with data consumers
- Learn how to educate your peers about the benefits of data observability
Preț: 301.96 lei
Preț vechi: 377.44 lei
-20% Nou
57.79€ • 60.11$ • 48.43£
Carte disponibilă
Livrare economică 20 februarie-06 martie
Livrare express 06-12 februarie pentru 30.10 lei
Specificații
ISBN-10: 1098133293
Pagini: 250
Dimensiuni: 178 x 234 x 19 mm
Greutate: 0.43 kg
Editura: O'Reilly
Notă biografică
During his time evangelizing Spark and helping hundreds of companies in the US and in EU work on their data pipelines and models, he has witnessed the lack of visibility and control of data jobs after they are deployed in production.
Since 2015, he has been talking to tech and data-savvy people to build a sustainable solution for this problem. That is: "how to make data observable"Â in a way that can be adopted smoothly by any data practitioner.
Today, he is regularly invited to companies to educate their data teams, whilst running Kensu, which has more than 50 years of total development time dedicated to building the set tools to help data engineers and their peers to build trust in what they deliver.
Also he is in ongoing talks with advocates such as Gartner to create a definition of Data Observability that refers to all its important facets. Finally, he has written books, blogs, slides, training materials, etc. since 2013, including many materials with O'Reilly.