Cantitate/Preț
Produs

Fuzzy-Bildverarbeitung: Einführung in Theorie und Praxis

Autor Hamid R. Tizhoosh
de Limba Germană Paperback – 26 oct 1997
In den letzten Jahren hat die Fuzzy-Logik auch im Bereich der Mustererkennung Einzug gehalten. Das Buch befaßt sich mit dem Einsatz von Fuzzy-Methoden in der digitalen Bildverarbeitung. Es führt Schritt für Schritt in die Theorie und Praxis der Fuzzy-Bildverarbeitung ein und stellt neue Konzepte, Definitionen und Algorithmen vor. Anhand zahlreicher Beispiele wird die Theorie unmittelbar in die Praxis umgesetzt.
Das Buch wendet sich an alle Wissenschaftler, Ingenieure und Studierenden, die in den Bereichen der Fuzzy-Logik oder der Bildverarbeitung aktiv sind. Vorausgesetzt wird nur eine gewisse Vertrautheit mit Bildverarbeitung; die Grundlagen der Fuzzy-Logik werden in den ersten Kapiteln ausführlich behandelt.
Citește tot Restrânge

Preț: 28645 lei

Preț vechi: 35806 lei
-20% Nou

Puncte Express: 430

Preț estimativ în valută:
5484 5974$ 4600£

Carte tipărită la comandă

Livrare economică 18 decembrie 24 - 01 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540631378
ISBN-10: 3540631372
Pagini: 260
Ilustrații: XIV, 242 S. 93 Abb.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Professional/practitioner

Descriere

In den letzten Jahren hat die Fuzzy-Logik auch im Bereich der Mustererkennung Einzug gehalten. Das Buch befaßt sich mit dem Einsatz von Fuzzy-Methoden in der digitalen Bildverarbeitung. Es führt Schritt für Schritt in die Theorie und Praxis der Fuzzy-Bildverarbeitung ein und stellt neue Konzepte, Definitionen und Algorithmen vor. Anhand zahlreicher Beispiele wird die Theorie unmittelbar in die Praxis umgesetzt.
Das Buch wendet sich an alle Wissenschaftler, Ingenieure und Studierenden, die in den Bereichen der Fuzzy-Logik oder der Bildverarbeitung aktiv sind. Vorausgesetzt wird nur eine gewisse Vertrautheit mit Bildverarbeitung; die Grundlagen der Fuzzy-Logik werden in den ersten Kapiteln ausführlich behandelt.

Cuprins

1 Einleitung.- 1.1 Unsicherheit in der Bildverarbeitung.- 1.1.1 Unsicherheit bei der Grauwertmanipulation.- 1.1.2 Unsicherheit bei der geometrischen Interpretation.- 1.1.3 Unsicherheit bei der Bildanalyse.- 1.2 Quellen der Unsicherheit.- 1.3 Ansätze: Zugehörigkeit versus Wahrscheinlichkeit.- 1.4 Warum Fuzzy in der Bildverarbeitung?.- 1.5 Über das vorliegende Buch.- 2 Bausteine der Fuzzy-Systeme.- 2.1 Grundlagen.- 2.1.1 Klassische Mengen.- 2.1.2 Fuzzy-Mengen.- 2.1.3 ?-Schnittmengen.- 2.1.4 Konvexität.- 2.1.5 Zugehörigkeit: ihre Bedeutung und Darstellung.- 2.1.6 Generierung von Zugehörigkeiten.- 2.1.7 Mengentheoretische Operationen.- 2.1.8 Fuzzy-Mengen als Punkte im Hyperwürfel.- 2.2 Fortgeschrittene Aspekte der Fuzzy-Systeme.- 2.2.1 Fuzzy-Relationen.- 2.2.2 Das Erweiterungsprinzip.- 2.2.3 Fuzzy-Arithmetik.- 2.2.4 Fuzzy-Maße.- 2.2.5 Fuzzy-Integrale.- 2.2.6 Konzept der linguistischen Variablen.- 2.2.7 Fuzzy-Logik.- 3 Theorie der Fuzzy-Bildverarbeitung.- 3.1 Bilder unscharf verstehen.- 3.1.1 Unscharfe Bilddefinition.- 3.1.2 Bilder fuzzyfizieren.- 3.1.3 Fuzzyfizierung und Bewältigung der Unsicherheit.- 3.1.4 Bilder unscharf verarbeiten.- 3.1.5 Theoretischer Zugang zur Fuzzy-Bildverarbeitung.- 3.2 Zugang über Fuzzy-Geometrie.- 3.3 Zugang über die Maße der Unschärfe und der Bildinformation.- 3.4 Zugang über Fuzzy-Inferenzsysteme.- 3.4.1 Entwurf von Fuzzy-Inferenzsystemen.- 3.4.2 Ablauf von Fuzzy-Inferenz Systemen.- 3.4.3 Inferenzsysteme als Funktions-Approximator.- 3.5 Zugang über Fuzzy-Clusteralgorithmen.- 3.5.1 Fuzzy c-Means (FCM).- 3.5.2 Variationen von Fuzzy-Clustering.- 3.5.3 Possibilistic c-Means (PCM).- 3.5.4 Klassengültigkeit der Fuzzy-Klassifikation.- 3.6 Zugang über Fuzzy-Morphologie.- 3.6.1 Binäre Dilatation.- 3.6.2 Binäre Erosion.- 3.6.3 Von binärer zur Fuzzy-Morphologie.- 3.6.4 Fuzzy-Erosion und Fuzzy-Dilatation.- 3.7 Zugang über Fuzzy-Grammatik.- 3.7.1 Formale Sprachen und Grammatiken.- 3.7.2 Fuzzy-Sprachen.- 3.7.3 Fuzzy-Grammatik.- 3.7.4 Fraktionale Fuzzy-Grammatik.- 3.7.5 Verschiedene Typen von Fuzzy-Grammatik.- 3.7.6 Fuzzy-Sprachen lernen.- 3.8 Zugang über Fuzzy-Integral.- 3.8.1 Fuzzy-Maße.- 3.8.2 Sugeno-Maße.- 3.8.3 Fuzzy-Integral.- 3.8.4 Verallgemeinertes Fuzzy-Integral.- 3.8.5 Klassifikation mit Fuzzy-Integral.- 3.9 Zugang über Neuro-Fuzzy-Ansätze.- 3.9.1 Hybride Neuro-Fuzzy-Systeme.- 3.9.2 Fuzzy-Neuronale Netze.- 3.9.3 Fuzzy-Neuronen.- 3.9.4 Fuzzy-Assoziativspeicher.- 3.9.5 Fuzzy-Kohonen-Netz.- 3.10 Zugang über fuzzy-genetische Ansätze.- 3.10.1 Genetische Algorithmen mit einer Fuzzy-Fitneßfunktion.- 3.10.2 Genetische Optimierung einer Fuzzy-Regelbasis.- 4 Fuzzy-Algorithmen in der Bildverarbeitung.- 4.1 Fuzzy-Bildverbesserung.- 4.1.1 Verbesserung mit Fuzzy-Erwartungswert.- 4.1.2 Verbesserung durch Minimierung der Unschärfe.- 4.1.3 Fuzzy-Histogramm-Hyperbolisierung.- 4.1.4 Regelbasierte Bildverbesserung.- 4.1.5 ?-Verbesserung.- 4.2 Fuzzy-Segmentierung.- 4.2.1 Segmentierung durch Minimierung von Unschärfe.- 4.2.2 Segmentierung mit Fuzzy-Integral.- 4.3 Fuzzy-Skelettierung.- 4.4 Fuzzy-Kantendetektion.- 4.4.1 Kantendetektion durch optimale Fuzzyfizierung.- 4.4.2 Regelbasierter Kantendetektor.- 4.4.3 Fuzzy-morphologische Kantendetektoren.- 4.4.4 Fuzzy-perzeptuale Gruppierung.- 4.5 Ausblick.- Anhang A: Tabelle der T-Normen.- Anhang B: Tabelle der S-Normen.

Caracteristici

Systematische und leicht verständliche praxisorientierte Einführung in die Anwendung von Fuzzy-Logik in der digitalen Bildverarbeitung
Stellt neue Konzepte und Algorithmen vor
Zahlreiche Abbildungen, Tabellen, Beispiele und Diagramme
Konkurrenzlos in der Literatur zum Einsatz von Fuzzy-Methoden in der Bildverarbeitung